
A Floating-Point Multiplier

Eduardo Sanchez
EPFL – HEIG-VD

An overview of the IEEE FP format

• The number, in binary, must be normalized: the integer part must
always be equal to 1

• The exponent, an integer value, is not represented in 2-
complement, but in a biased representation: a bias of 127 is
added to the exponent

-9.5 = -1.0011x23

sign mantissa
exponent

8 23

1 10000010 00110000000000000000000

2 Eduardo Sanchez

• As the value 0 can not be normalized, a special representation is
reserved for: all bits to zero

• In general, the values 00000000 and 11111111 from the exponent
field are reserved for special cases and are not biased values:
• 00000000 is used for non-normalized values
• 11111111 is used for infinity and NaN (not a number)

3 Eduardo Sanchez

Multiplication algorithm

• A multiplication of two floating-point numbers is done in four steps:
• non-signed multiplication of mantissas: it must take account of the integer

part, implicit in normalization. The number of bits of the result is twice the
size of the operands (48 bits)

• normalization of the result: the exponent can be modified accordingly
• addition of the exponents, taking into account the bias
• calculation of the sign

4 Eduardo Sanchez

Example

• Let's suppose a multiplication of 2 floating-point numbers A and
B, where A=-18.0 and B=9.5

• Binary representation of the operands:
A = -10010.0

B = +1001.1

• Normalized representation of the operands:
A = -1.001x24

B = +1.0011x23

• IEEE representation of the operands:
A = 1 10000011 00100000000000000000000

B = 0 10000010 00110000000000000000000

5 Eduardo Sanchez

• Multiplication of the mantissas:
• we must extract the mantissas, adding an1 as most significant bit, for

normalization
100100000000000000000000

100110000000000000000000
• the 48-bit result of the multiplication is:
0x558000000000

• only the most significant bits are useful: after normalization (elimination of
the most significant 1), we get the 23-bit mantissa of the result. This
normalization can lead to a correction of the result's exponent

• in our case, we get:

01 01010110000000000000000 0000000000000000000000

6 Eduardo Sanchez

• Addition of the exponents:
• exponent of the result is equal to the sum of the operands exponents. A 1

can be added if needed by the normalization of the mantissas
multiplication (this is not the case in our example)

• as the exponent fields (Ea and Eb) are biased, the bias must be removed in
order to do the addition. And then, we must to add again the bias, to get
the value to be entered into the exponent field of the result (Er):

 Er = (Ea-127) + (Eb-127) + 127
 = Ea + Eb – 127

• in our example, we have:

what is actually 7, the exponent of the result

Ea 10000011

Eb 10000010

-127 10000001

Er 10000110

7 Eduardo Sanchez

• Calculation of the sign of the result:
• the sign of the result (Sr) is given by the exclusive-or of the operands signs

(Sa and Sb):
 Sr = Sa Sb

• in our example, we get:
 Sr = 1 0 = 1

i.e. a negative sign

• Composition of the result:
the setting of the 3 intermediate results (sign, exponent and
mantissa) gives us the final result of our multiplication:

1 10000110 01010110000000000000000

AxB = -18.0x9.5 = -1.0101011x2134-127 = -10101011.0 = -171.0
10

8 Eduardo Sanchez

Laboratory

• Design, writing in VHDL, a hardware multiplier of 2 floating-point
numbers A and B, represented using the simple precision IEEE
format (32 bits)

• Synthesize your program for the Altera board and verify its
behavior. Try for example with:
• A=134.0625 and B=-2.25
• A=-14.5 and B=-0.375
• A=7.5 and B=15.5

9 Eduardo Sanchez

Solutions

• A = 134.0625 = 1.00001100001x27
A = 0 10000110 00001100001000000000000 = 0x43061000
B = -2.25 = -1.001x21
B = 1 10000000 00100000000000000000000 = 0xC0100000
AxB = -301.640625 = -1.00101101101001x28

AxB = 1 10000111 00101101101001000000000 = 0xC396D200
• A = -14.5 = -1.1101x23

A = 1 10000010 11010000000000000000000 = 0xC1680000
B = -0.375 = -1.1x2-2
B = 1 01111101 10000000000000000000000 = 0xBEC00000
AxB = 5.4375 = 1.010111x22

AxB = 0 10000001 01011100000000000000000 = 0x40AE0000

10 Eduardo Sanchez

• A = 7.5 = 1.111x22
A = 0 10000001 11100000000000000000000 = 0x40F00000
B = 15.5 = 1.1111x23
B = 0 10000010 11110000000000000000000 = 0x41780000
AxB = 116.25 = 1.11010001x26

AxB = 0 10000101 11010001000000000000000 = 0x42E88000

11 Eduardo Sanchez

Eduardo Sanchez 12

+

1 0

+

1 0

+

1 0 1 0

0

0

0 0

0

A
B

AxB

4

4

5

3

4

4

