
A VHDL iA VHDL review

Eduardo Sanchez

EPFL

Entity and architecture
• A piece of hardware is visualized as a "black box". The

interface of the black box is well defined, while its inside is
invisible

• In VHDL the black box is known as an entity

• VHDL allows to associate an implementation with the black
box, describing its contents: this implementation is called the
architecturearchitecture

A

architecture

B

C

tit

Eduardo Sanchez

entity

Signals and typesSignals and types

• In order to connect different parts of a design VHDL usesIn order to connect different parts of a design, VHDL uses
signals (equivalent to wires in real hardware)

• Every signal in VHDL has a type. For synthesis, the most used y g yp y
types are std_logic, for 1-bit signals, and std_logic_vector,
for buses. These types are defined in the std_logic_1164
package which resides in the IEEE librarypackage, which resides in the IEEE library

library ieee;
i td l i 1164 lluse ieee.std_logic_1164.all;

Eduardo Sanchez

• The std_logic type has nine values:
•'U' uninitialized

•'X' forcing unknown

•'0' forcing 0•'0' forcing 0

•'1' forcing 1

•'Z' high impedance

•'W' weak unknown

•'L' weak 0 (pull-down)

•' ' k 1 (ll)•'H' weak 1 (pull-up)

•'-' don’t care

• Most synthesis tools treat these values slightly differentlyMost synthesis tools treat these values slightly differently
than simulators: 'L' is for 0, 'H' is for 1, '-' and 'X' for
don’t care, and '-' is a wildcard for comparisons

• For assignments the used values are 0 1

Eduardo Sanchez

• For assignments, the used values are 'X', '0', '1', 'Z'

Structure of a VHDL program
library ieee;
use ieee.std_logic_1164.all;

entity toto is
port (

);
end toto;

port declarations entity name

architecture test of toto is

architecture
declarative section begin

end test;

declarative section

architecture body architecture name

Eduardo Sanchez

end test;

• VHDL is not case sensitive

• VHDL i f f t• VHDL is free format

• Comments are indicated with a double-dash. The carriage
return terminates a commentreturn terminates a comment

Eduardo Sanchez

The entity portsThe entity ports
• The signals of an entity are its ports. They have an

associated type and a mode indicating its driver directionassociated type and a mode, indicating its driver direction
and whether or not the port can be read from within the
entity

Mode in

A
The port signal can be read
within the entity (but it cannot
be written)be written)

Eduardo Sanchez

Mode out
C The port signal cannot be read

within the entity

C
Cint

C

Mode inout
A

Mode inout
The port signal can be read
within the entity

Eduardo Sanchez

Concurrency
• VHDL supports the notion of "concurrent execution" or

"concurrence", with two methods of describing such
concurrence inside an architecture: processes and
concurrent assignments

architecture toto of test is
begin
c <= a and b;
z <= c when oe=‘1’ else ‘Z’;

concurrent assignments
z <= c when oe= 1 else Z ;
seq: process (clk, reset)

begin
. sequential statements
.

end process;
end toto;

q

Eduardo Sanchez

• The relative order of concurrent assignments and processes
within an architecture is unimportant

• A i ll ti f ti l t t t i id• A process is a collection of sequential statements: inside a
process, the order of statements is important

procA: process (a, b)

begin

d

process body

optional label
sensitivity list

end process;
process declarative

region

Eduardo Sanchez

• Th iti it li t i li t f ll i l th t t i ti f• The sensitivity list is a list of all signals that trigger execution of
the process. A process is not executed unless one (or more) of
the signals in the sensitivity list changes in valueg y g

• The statements of a process are executed simultaneously
(during the wait), even though they are evaluated sequentially

• Most synthesis tools accept only one wait statement per
process, which is usually required at the beginning or end of a
processprocess

• Signals have implicit memory: they retain their previous value,
and are not updated until some later time or eventp

• Corollary: when multiple assignments are made to a signal
within a process, only the last assignment takes effect

Eduardo Sanchez

Latch implementation
• The implicit memory property of signals in VHDL is used to infer latches. But

there are times when an implicit latch may be generated "accidentally". Most
often, the resulting logic will be functionally correct; however, it will be slow and
result in a much larger circuit than necessary

process (en, d)
b i d qbegin
if en='1'
then q <= d;

end if;

d

en

q

latch

;
end process;

process (en, d)
begin 0 0
if en='1'
then q <= d;
else q <= '0';

end if;

q

d

0

1

0

Eduardo Sanchez

end if;
end process; en

• For fastest, most efficient designs, we must do the following:For fastest, most efficient designs, we must do the following:

• completely specify all conditions within a process: if the else condition
is not specified, then the output signals within the if…then will retain
their last value due to implicit memorytheir last value due to implicit memory

• completely specify all output possibilities within a process: the outputs
must be specified completely for all selection options in a case
t t t W d thi b tti th d f lt l t th b i istatement. We can do this by setting the default value at the beginning

of the process: we assert only the outputs necessary within each
selection in the case statement (this takes advantage of the fact that
signal values do not get updated until the end of a process)signal values do not get updated until the end of a process)

Eduardo Sanchez

Register implementationRegister implementation

• The preferred way of describing flip-flops is using the if thenThe preferred way of describing flip flops is using the if…then

statement along with a sensitivity list

process (clk)
begin
if clk'event and clk='1'

then if en='1'
then q <= d;

end if;
end if;
dend process;

Eduardo Sanchez

• A h• Asynchronous reset:
process (clk, reset)
begin
if reset='1'if reset 1

then q <= '0';
elsif clk'event and clk='1'

then q <= d;
end if;

• Synchronous reset:

end if;
end process;

process (clk)p ()
begin
if clk'event and clk='1'

then if reset='1'
then q <= '0';q ;
else q <= d;

end if;
end if;

end process;

Eduardo Sanchez

p ;

Counter implementationp
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

tit t ientity counter is
port (clk : in std_logic;

reset : in std_logic;
count: out std_logic_vector(3 downto 0));

end counter;

architecture simple of counter is
signal countL : std_logic_vector(3 downto 0);

begin
process (clk)process (clk)
begin
if (clk'event and clk='1')
then if reset='1'

then countL <= "0000";
else countL <= countL + 1;

end if;
end if;
end process;

Eduardo Sanchez

count <= countL;
end simple;

Design stylesDesign styles

• The focus of VHDL is design for RTL (Register Transfer
Level) synthesis: it means that logic is treated as if were
combinational logic in between registers

CL CL… …

register boundaries

Eduardo Sanchez

register boundaries

• The combinational logic can be implemented in any of theThe combinational logic can be implemented in any of the
VHDL design styles:
• structural: a design composed of sub-blocks, analogous to writing a

netlist of a schematic designnetlist of a schematic design

• dataflow: Boolean equations

• behavioral: algorithms

• Example:

a

resultb

c

tit hit t

Eduardo Sanchez

entity architecture

architecture dataflow of toto isarchitecture dataflow of toto is
signal node : std_logic;
begin
node <= a xor b;
result <= node xor c;result <= node xor c;
end dataflow;

architecture behavior of toto is
begin
process (a, b, c)

begin
if ((a xor b xor c)='1')

then result <= '1';
else result <= '0';

end if;
end process;

end behavior;

Eduardo Sanchez

hit t t t l f t t iarchitecture structural of toto is
signal u1_out : std_logic;
begin
u1: xor2 port map (i1 => a,

i2 > bi2 => b,
y => u1_out);

u2: xor2 port map (i1 => u1_out ,
i2 => c,

> lt)y => result);
end structural;

Eduardo Sanchez

Exercise
• To design a programmable pulse generator. The delay

between pulses, and the length of duration of each pulse is
programmableprogrammable

programmable
pulse length

programmable
pulse delay

LoadDelay

LoadLength

Data pulse

g

reset

lk

8

Eduardo Sanchez

clk

Design partitioningg p g
• Partitioning is the process of organizing and sub-dividing a

design into smaller units for the purpose of:
• managing design complexity

• enhancing reliability via design reuse

• making it easier to maintain design• making it easier to maintain design

• incrementally synthesizing the design as it is developed

• A natural partition is the one that tends to separate datapath p p p
from control logic

• Hierarchy is a method of modularizing a design at different
levels Each successive level represents modules of lesserlevels. Each successive level represents modules of lesser
complexity than the one above it until, finally, the design is
completely specified in terms of relatively simple blocks

Eduardo Sanchez

• VHDL has the native capability to handle hierarchy

• We need to place (or instantiate) one or more copies of a black
box (an entity-architecture pair): a component must be declared,box (an entity architecture pair): a component must be declared,
which can be instantiated

• Components only describe the ports for a given black box. The
logical behavior of the component is based on a correspondinglogical behavior of the component is based on a corresponding
entity-architecture pair

• The component name must match the corresponding entity namep p g y

• The signal names in the component should be the same as the
signal name in the entity

• E h i h l b l d h i i i• Each component instance has a label and has its port association
mapped to the appropriate signals in the design. Each signal in
the port list (the formal name) of the component is connected to a
signal within the architecture (the actual name). This association
can be explicit (named) or positional

• Each component instantiation is done concurrently within the

Eduardo Sanchez

Each component instantiation is done concurrently within the
architecture and can never be placed within a process

• Example:

u4: OR2 port map (i1 => toto

toto
y

titi i2

i1
OR2

y

u4: OR2 port map (i1 => toto,
i2 => titi,
y => y);

u4: OR2 port map (totoi2 u4: OR2 port map (toto,
titi,
y);

• Output ports may be left unconnected: it is indicated with a
t i t fport assignment of open

Eduardo Sanchez

Libraries and packagesp g
• There are two libraries that are implicitly visible, and do not

need the library clause for visibility:
•std: it contains the various types as well as operators that are part of

the VHDL standard

•work: it is the default working libraryg y

• It is often useful to keep logical building blocks of a design in
separate files. To do so, however, these lower design units, or
entity-architecture pairs must be analyzed (into the workentity-architecture pairs, must be analyzed (into the work
library) before the top level of the design is analyzed

• A package is a collection of declarations, which can be
d b th l I it i l t f kaccessed by the use clause. In its simplest form, a package

may be used to declare components, which can then be
made visible not only for the current design, but by any design

Eduardo Sanchez

that references the package

library ieee;
use ieee std logic 1164 all;use ieee.std_logic_1164.all;

package toto is
•
•
•

end toto;

component declarations

• We must first add the package to the work library before it can be
used. For most synthesis tools, this implies that the compilation of
the file containing the package must occur prior to that of the top
level design that uses the package

• use work.toto.all
A library declaration and use clause are only valid for one design y y g
unit (entity-architecture pair) that follows the clause

• In addition, types and sub-types may also be placed into
packages

Eduardo Sanchez

packages

Component configurationComponent configuration

• I VHDL d l i l l• In VHDL, a component declaration may apply to several
entities, which in turn may be expressed using several
architectures. The process of associating a specific entity and

farchitecture to a component is known as configuration

• There are two kinds of configuration:
• configuration declarations bind each component to an entity architecture• configuration declarations bind each component to an entity-architecture

pair in a design

• configuration specifications are written within an architecture, and only
bind components for that architecturebind components for that architecture

Eduardo Sanchez

configuration toto of entityname is
for architecturename
for u1: and2

tit k d2(t1)

component

use entity work.and2(rt1);
end for;
•
•

instance

•
end toto; entity-architecture pair

• If we chose to bind all instances of a given component to a
given entity-architecture pair we can use the for allgiven entity-architecture pair, we can use the for all
statement in the configuration declaration

Eduardo Sanchez

Scalable and parameterizable
d idesign

• Unconstrained arrays: VHDL allows port signals to beUnconstrained arrays: VHDL allows port signals to be
declared unconstrained

• Exemple:

library ieee;
use ieee.std_logic_1164.all;

architecture synt of sdffe;
begin

entity sdffe is
port (d : in std_logic_vector;

en : in std_logic;
clk : in std logic;

process
begin
wait until clk='1';
if en='1'

h dclk : in std_logic;
q : out std_logic_vector);

end sdffe;

then q <= d;
end if;
end process;

end synt;

Eduardo Sanchez

• To instantiate this entity-architecture pair, we must create a
corresponding component declaration:

component sdffe
port (d : in std_logic_vector;

en : in std_logic;
lk i td l iclk : in std_logic;
q : out std_logic_vector);

end component;

After placing this component declaration into the primitive
package, we can then instantiate our scalable flip-flop into a
d i b h i l th i f th i t d t tdesign: by changing only the size of the input and output
vectors the design is automatically scaled

Eduardo Sanchez

• Generics: generics are constants that are passed into theGenerics: generics are constants that are passed into the
entity declaration. They are not only used to pass information
to an entity, but are useful when sizing an array in the port
d l ti d ithi th hit tdeclaration, and even within the architecture

• Exemple:

library ieee;
use ieee.std_logic_1164.all;

entity pdffe is
generic (n : integer := 2);
port (d : in std_logic_vector(n-1 downto 0);

en : in std_logic;
clk : in std_logic;
rst : in std_logic;
q : out std_logic_vector(n-1 downto 0));

end pdffe;

Eduardo Sanchez

architecture synt of pdffe;architecture synt of pdffe;
begin
process (rst, clk)
begin
if rst='1'if rst='1'

then q <= (others => '0');
elsif (clk'event and clk='1')

then if en='1'
then q <= d;then q <= d;

end if;
end if;
end process;

end synt;

• The default size indicated in the generic declaration is not only

end synt;

g y
good design practice, but is also required by most synthesis
tools

Eduardo Sanchez

• Loops

• Exemple:

library ieee;y
use ieee.std_logic_1164.all;

entity oddParityLoop is
generic (width : integer := 8);g g
port (ad : in std_logic_vector(width-1 downto 0);

oddParity : out std_logic);
end oddParityLoop ;

Eduardo Sanchez

architecture synt of oddParityLoop;
beginbegin
process (ad)

variable loopXor : std_logic;
begin
loopXor := '0';loopXor : 0 ;
for i in 0 to width-1 loop

loopXor := loopXor xor ad(i);
end loop;
oddParity <= loopXor;oddParity < loopXor;
end process;

end synt;

Eduardo Sanchez

• Generate: the generate statement in VHDL generates logic by
repeating a slice of logic. Unlike the for…loop, however, the
generate statement encapsulates concurrent statementsgenerate statement encapsulates concurrent statements

• Exemple:

toto: for i in 1 to n generate

• It is possible to create logic conditionally The condition must

g
·

·

end generate;
• It is possible to create logic conditionally. The condition must

be static, such as a generic or a constant, at the time of the
synthesis:

toto: if condition generate
·

·

end generate;

Eduardo Sanchez

g ;

