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The Logic Systems Laboratory, School of Computer and Communication Sciences, Swiss Federal Institute 
of Technology-Lausanne (EPFL) conducts research along three primary lines: (1) bio-inspired systems, (2) 
development and analysis of innovative hardware architectures, including new microprocessor architectures 
and custom processors based on reconfigurable logic, and (3) biologically inspired robots. 
 
 
Artificial Neural Network technologies play an important role in these different research directions. In this 
document, we summarize the state of the art and our vision for the future in five specific research areas: 1) 
the POEtic project, 2) Developmental approaches in hardware, 3) Neural networks for locomotion control in 
animals and robots, 4) Neural networks for modular robotics, and 5) Implementing hybrid intelligent 
methodologies in hardware.  
 
 

1) The POEtic project 
 
State of the art 
 
The development of bio-inspired systems [1], like artificial neural networks, evolvable hardware, embryonic 
cellular arrays [2], or genetic algorithms, has increased in the last years. Field Programmable Gate Arrays 
(FPGAs) are interesting tools for prototyping such systems since they allow rapid prototyping, but these 
circuits are not fit for the implementation of cellular and growing systems. No actual circuit is currently 
general enough to implement different kinds of neural networks or other learning mechanisms, and 
specialized enough for the development of efficient multi-cellular systems. 
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Vision for the future 
 
The POEtic [1] project [2][3][4], in collaboration with the universities of Barcelona (UPC), York, Glasgow and 
Lausanne, plans to realize an electronic tissue for efficiently implementing bio-inspired applications, 
following the 3 life-axis: Phylogenetic (evolution), Epigenetic (learning) and Ontogenetic (growth and 
development). This tissue is presented as a programmable electronic circuit. It is based on a grid of 
molecules similar to standard FPGA cells, containing a look-up-table and a D flip-flop. A second plane 
composed of dynamically reconfigurable connections allows the creation of long distance connections. 
Molecules are used to implement different types of cells, like artificial neurons, and the reconfigurable 
connections are used for inter-cellular links. Finally, an on-chip micro-controller manages the input/output, 
and the evolution process (phylogenetic axis). 
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2) Developmental approaches in hardware 
 
State of the art 
 
Aside from some theoretical models for implementing developmental approaches to computer science, this 
axis of bio-inspired research has been exploited mostly for the growth and on-line structural adaptation of 
neural networks (see, for example, [1]) or, to a lesser extent, for the morphogenesis of robots (e.g., [2]). With 
some rare exceptions [3], the overhead implicit in the realization of developmental approaches have limited 
their application to simulations. 
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Vision for the future 
 
While in the past the implementation of ontogenetic approaches in hardware has been essentially limited to 
simulations, the projected complexity of the future generations of computing circuits (e.g., nanotechnologies) 
introduces a need for hardware-friendly developmental mechanisms to provide the twin properties of self-
organization (to give structure to circuits too complex to be designed by conventional means) and fault-
tolerance (to generate circuits able to operate in the presence of unavoidable faults). Some recent research 
efforts have been going in this direction [1][2][3], but much remains to be done, particularly where 
development is coupled with other bio-inspired mechanisms such as evolution (evolving development) and 
learning (growth of adaptive systems). 
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3) Neural networks for locomotion and motor control in animals and robots 
 
State of the art 
 
Animal-like locomotion, i.e. the use of multiple degrees-of-freedom in a rhythmic way such as to obtain 
forward motion, is a fascinating phenomenon which requires complex control mechanisms. In animals, the 
locomotor neural networks are often based on Central Pattern Generators (CPGs), networks capable of 
producing multiple stable rhythmic signals which are modulated by simple tonic (i.e. non-rhythmic) inputs. 
Numerical simulations of neural networks are extensively used to get a better understanding of these circuits 
(cf [1, 2]). Since the 1990’s, biomimetic robots are increasingly used to test the validity of these neural 
network models [3]. This creates interesting interactions between neuroscience and robotics, with on one 
hand robots being used as tools for testing hypotheses of animal motor control, and on the other hand the 
development of new biologically-inspired adaptive control algorithms for robots. 
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Vision for the future 
 
We expect that artificial neural network technologies will play an increasing role in robotics, in particular, in 
situations where the environment in which the robot has to move is unknown or only partially known. In 
these situations, trajectories of limbs can not be planned in advance and the most promising approach is the 
use of adaptive control algorithms which rely on perturbation-resistant rhythm generation and fast reflex 
pathways for robust locomotion. The use of genetic algorithms to optimize robust pattern generators in 
simulation appears to be one of the most promising approaches, since genetic algorithms do not require 
computing a gradient of the cost function (which would be a very difficult task since locomotion is the result 
of a complex nonlinear interaction between the controller, the body, and the environment) and can directly 
optimize criteria based on actual movements performed by the robot [1, 2]. In some cases, if demonstrations 
of useful movements can be obtained, another approach is to use statistical learning algorithms, such as 
locally weighted learning, to do learning of movements by imitation [3]. Finally, reinforcement learning 
algorithms have an important role to play for problems of online learning with low dimensional search 
spaces. 
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4) Neural networks for modular robotics 
 
State of the art 
 
Modular robotics aims at developing robots with multiple degrees of freedom constructed from multiple 
simple units each possessing their own actuation, energy sources, and control mechanisms. The goal is to 
obtain robots which can either be quickly constructed by an engineer for a specific task, or which can 
autonomously self-configure according to the task and the environment. The motivation of using multiple 
simple units is two-fold: to obtain robustness through redundancy, and to be able to continuously adapt the 
configuration of the robot to the task at hand (in terms of number of degrees of freedom and energy 
requirements, for instance), rather than constructing a single but non modifiable sophisticated robot. This 
second point is especially important for applications in unknown environments where the best configuration 
of the robot might not be known in advance, and for applications requiring important changes in the robot 
shape (e.g. a task which requires sliding through a small opening, and then a manipulation of an object with 
several limbs). Examples of exciting projects working in this field include the CONRO project at the 
University of Southern California [1], the modular robotics project at the Palo Alto Research Center [2], and 
the European Swarm-bot project [3] to which EPFL’s Autonomous Systems Laboratory participates. 
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Vision for the future 
 
Developing controllers for a modular robot is a difficult task since the controllers must be adapted to the 
configurations of the robot and to tasks which are not necessarily known in advance. A particularly 
challenging design problem is the development of controllers which can optimize global behavior of the robot 
while being implemented locally in each unit. Local learning rules therefore need to be designed such as to 
optimize global behavior (e.g. the speed of locomotion of the robot) through a process of self-organization. 
This directly relates to the type of problems addressed by the POEtic project described above, and we 
therefore intend to extend the notions of self-configurable electronics to control modular robots. 
 

5) Implementing hybrid intelligent methodologies on hardware 
 
State of the art 
 
Living organisms are capable of adapting to changing environments to a far greater degree than man-made 
devices. To reduce this gap, adaptive methodologies such as evolutionary computation (EC), neural 
networks (NN), and fuzzy logic (FL) have been conceived. Moreover, recent research tries to combine NN, 
EC, and FL so as to take advantage of their complementarities: Neural-fuzzy hybrid approaches [1, 7] 
combine plasticity (NN) and knowledge representation (FL) to design adaptive, human-friendly systems; (2) 
Evolutionary fuzzy modeling (EFM) [3, 4, 6] applies evolutionary algorithms to solve the fuzzy modeling 
problem with knowledge-tuning or structure-learning techniques. (3) Evolutionary artificial neural 
networks [10] are artificial neural networks in which evolution is applied as another form of adaptation for 
tasks such as connection-weight training, architecture design, and learning-rule adaptation. 
In hardware systems, learning and evolution are two forms of adaptation implying, at different time-scales, 
modifications in the functionality and structure of a circuit. Evolvable hardware combines evolutionary 
algorithms and hardware devices for on- or off-chip evolutionary circuit design, hardware design with 
embedded evolution, and open-ended hardware evolution [2, 8, 9]. Configurable Neural Hardware uses 
on- or off-chip learning, either adapting the connection weights or modifying the network's topology [2, 5]. 
Configurable fuzzy hardware implements adaptive evolutionary-fuzzy or neural-fuzzy systems. 
 
 



Vision for the future 
 
The development of adaptive systems is rapidly coming to an impasse, calling for novel solutions to be 
embedded into electronic devices. A promising approach proposes to replace current software-oriented 
architectures with novel hardware-oriented computing platforms, whose design will be guided by criteria like 
evolvability, learning, autonomy, or real-time behavior, instead of classic criteria based on programmability. 
Adaptive devices built on such platforms will rely on learning strategies for life-time adaptation, and on 
evolutionary approaches for part of the design process, calling for novel hardware-oriented methodologies to 
replace the extant programming-oriented adaptive algorithms. Also, these devices shall employ human-
friendly knowledge representations, such as those used in fuzzy logic, to simplify human/machine 
interaction. A major research effort will be required to: (1) analyze the mechanisms that govern adaptation 
so as to elucidate the potential roles of learning and evolution in the performance of adaptive devices; (2) 
develop general strategies to design on-chip adaptive algorithms; (3) integrate human-interpretable 
knowledge representation into adaptive devices either by adding hardware-oriented adaptive techniques to 
existent fuzzy architectures or by conceiving entirely novel adaptive fuzzy approaches. 
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