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Microprocessor Vision 1999

• UI/HP/Intel research coalition formed in 1992

• Goals
– ILP architecture features to greatly increase productive IPC

• eliminate branches and control dependences

• support software to approach global scheduling

• control code size explosion

– Adaptive management of cache and bus hierarchy
• reduce memory related stall cycles

– Support software migration
• support fine-grain mixture of old and new code

– No compromise on cycle time
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Microprocessor Microarchitecture

Main Memory

100 cycle latency

L2 Cache
non-blocking
1M-byte, 4-way
64B block

System Bus Backside Bus
Interface

L1 Cache

non-blocking
16K-byte, 2-way
32B block

BTB
1K
direct-mapped
2-level

I-Fetch Unit

I-Cache
32K-byte
direct-mapped
64B block (split)

Instruction Decoder

Register Alias Table
(64 predicate and 128 regular) Reorder Buffer

Architecture
Register File

2 Memory Units

1 Floating Point
Unit

1 Branch Unit

2 Integer Units
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EPIC Compiler Technology Overview

If-Conversion

Classical Optimization

Predicate Optimization

ILP Optimization

Scheduling/Partial
Reverse If-Conversion

Register Allocation

Code Generation
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Predicated Execution

• Conditional execution of instructions based on a Boolean
source operand

• Execution model
– Load r1, r2, r3 <p1>

– If p1 is TRUE, instruction executes normally

– If p1 is FALSE, instruction treated as NOP (with some exceptions)

• Provides compiler with an alternative to guarding
instruction execution with branches
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Instruction Set Support for Predicated
Execution

• Full Predication Support
– Predicate defining instructions

– Full set of predicated instructions

– Separate register file

– Best performance

• Partial Predication Support
– Limited set of predicated instructions added to existing ISA

(CMOV, SELECT)

– Brings some performance increase to existing ISA’s

• Dynamic Predication Support
– No ISA change needed

– Smallest performance gain
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Predicate Defining Instructions
(HPL PlayDoh Spec)

pred_<cmp > P1 <type>, P2 <type>, src1, src2 (Pin)

• < cmp > - comparison type: =, >, <, etc.

• < type>
– Unconditional (U, U)

– OR-type (OR, OR)

– AND-type (AN, AN)

– Conditional (C, C)
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Unconditional Predicate Defines

• Handle blocks executed on one condition
if (a < 10)

c = c + 1
else

if (b > 20)
d = d + 1

else
e = e + 1

pred_ge p1(U), p2(U), a, 10
add c, c, 1 (p2)
pred_le p3(U), p4(U), b, 20 (p1)
add d, d, 1 (p4)
add e, e, 1 (p3)

bge, a, 10, L1

add c, c, 1
jump L3

ble b, 20, L2

add d, d, 1
jump L3

add e, e, 1L2:

L1:

L3:

F T

F T

Pin Comparison U U

Pout

0
0
1
1

0
1
0
1

0
0
0
1

0
0
1
0

p2 p1

p3p4
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if (a && b)
c = c + 1;

else
d = d + 1;

pred_clr p1
pred_eq p1(OR), p2(U), a, 0
pred_eq p1(OR), p3(U), b, 0 (p2)
add c, c, 1 (p3)
add d, d, 1 (p1)

beq, a, 0, L1

Pin Comparison OR OR

Pout

0
0
1
1

0
1
0
1

-
-
-
1

-
-
1
-

beq b, 0, L1

add d, d, 1add c, c, 1
jump L2

L1:

L2:

F T

F T

OR-type Predicate Defines

• Handle blocks executed on multiple conditions

p2

p1
p3

a && b
a || b
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if (a && b)
c = c + 1;

else
d = d + 1;

pred_clr p1
pred_set p3
pred_eq p1(OR), p3(AND), a, 0
pred_eq p1(OR), p3(AND), b, 0
add c, c, 1 (p3)
add d, d, 1 (p1)

beq, a, 0, L1

Pin Comparison AND AND

Pout

0
0
1

1

0
1
0
1

-
-

-
-

0 -

beq b, 0, L1

add d, d, 1add c, c, 1
jump L2

L1:

L2:

F T

F T

- 0

AND-type Predicate Defines

• More efficiently handle blocks executed on multiple
conditions

p1
p3

a && b
a || b
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Predication Benefits

• Eliminates branches in exchange for increased resource
subscription and/or dependence height
– Reduction in branch resource consumption

– Reduction in total branch misprediction penalty

• Aggressive control flow transformations
– Height reduction and aggressive branch motion

– Logic minimization of programmatic decision sequence

• Aggressive optimizations in the presence of control flow
– Simplifies static scheduling and optimization along multiple paths

– Controls code size explosion, makes some optimizations feasible
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Predicate-Domain Control Flow Transformation

• Predication allow general restructuring of control flow

• Predication allows significant decision height reduction

T

p1

p2 p4

p3 p5 p6

p8

T

p7

p3

p5

p8

p3 p5 p8

T

p3

p5

p8

T
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Path Height Reduction: Concept

• Path classes
– dependence limited

– resource limited

• Optimizations can be
performed to exchange
dependence height for
resource usage

• Goal: balance resource
height and dependence
height toreduce effective
height of path

Sequential Code

Saturated Code

• Height goes from 6 to 2
• Operation count went from

10 to 14
• Extra operations absorbed by

processor width
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Fully Resolved Predicates: Motivation

• Typical loops have many
infrequently taken exit branches

• Infrequent exit branches
– Impede code motion

– Increase length of path to
frequently taken branches

– Consume valuable branch
resources

• Goal: Use predication to
enhance performance in the
presence ofeasily predicted
branches

2%

4%

1%

1%

92%
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Fully Resolved Predicates: Concept

• Partially Resolved Predicates (PRP)
– Instruction execution is guarded by predicates or branches.

– Some control dependencies remain in predicated code.

• Fully Resolved Predicates (FRP)
– Instructions are guarded by predicates even if guarded by branches.

– All control dependencies within the region are eliminated.

– Any instruction can be hoisted above a branch without speculation.
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FRP: Computation

Partially Resolved Predicates Fully Resolved Predicates

Cond2

Cond1

A

B C

D

p1=cond1 p2=cond1

p3=cond2 || cond1

cond2

cond1

A

B C

D

T F

T F

p1=cond1 p2=cond1

cond2

cond1

A

B C

D

T F

T F

Hyperblock
Exit
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FRP: Case Study

• grep function “execute” inner loop

• Segment accounts for about 40% of total execution time.

• Source:
for (;;)

{

if (p2 >= ebp)

/* Excluded from Hyperblock */

if ((c = *p2++) == ‘\n’)

break;

if(c)

if (p1 < &linebuf[1024-1])

*p1++ = c;

}
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Height Reduction by Predication and Speculation

• FRP Predication reduced height via control flow restructuring
• Data speculation reduced height via reordering of possibly

conflicting loads and stores

Original Predicated Predicated and
Height Reduced

Unrolled with
data speculation

L

S

B

B
B
B
J

L

S
J

J
J
J

J
P

P
P
P
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S

P P

PP
P

P

P
P

J

J
J
J

J

L

S

P P

P P
P

P

P
P

J

J
J
J

J
L

S

P P

PP
P
P

P
P

J

J
J
J

J

Code example (grepexecute)
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Code Size Control using Predication

Code example(099.gocopyshape):

• Predication reduced code size by instruction merging (in example 35%)

Original
Predicated

B

S

L

J
S

B

S

L

J
S

B

S

L

J
S

B

S

L

J
S

S

L

J
S

B

S

L

J
S

B

S

L

J
S

B

P

X

P P P P P
P L

X X

S S S S

X

Code example(MediaBench Experimental Image Compressionreflect1):
Original (Overhead=8/17 instrs (47%))Optimized (6/19 (30%)) Predicated (3/13 (23%))

B1

J

B2

B1

J

J

B1

J

B1

J

B2 B2

J

J

P1
I0

I1

I3 I4 I5 I6

I0
I0I1

I7 I8

I9

I2 I2I2
I4I3I3

I5
I8

I9

I7 I6

I2

I7 I8
I9I8

I7

P3
I1
P2
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Analysis of Predicated Codes

• Live Variable Analysis Example:
– Without Predicate Aware Dataflow (Only

instructions on TRUE predicate can kill.)
• R7 is defined and killed by instruction 5; R7 is

used by instruction 6.

• R7’s live range is (5,6).

• R3 is not defined and killed by instruction 3 in all
cases because it is predicated on P1. R3 is used
by instruction 4.

• R3’s live range is (1,2,3,4) and live out the top of
the CB.

– With Predicate Aware Dataflow
• R7’s live range is also (5,6).

• R3’s live range is (3,4) because instruction 3
defines R3 for all uses by instruction 4. This is
known by studying the relation of P1 to P2.

1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1)

3 r3 = r4 + r5 (p1)

4 r8 = r3 + 1 (p2)

5 r7 = r4 + r6

6 r4 = r7 - 1 (p1)

7 r9 = r9 / 2 (p2)

• Dataflow without regard to predicates can lead to conservative results.
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The Predicate Flow Graph
1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1)

3 r3 = r4 + r5 (p1)

4 r8 = r3 + 1 (p2)

5 r7 = r4 + r6

6 r4 = r7 - 1 (p1)

7 r9 = r9 / 2 (p2)

1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1) (p2un) = (p1)

3 r3 = r4 + r5 (p1) (p1)

4 r8 = r3 + 1 (p2) (p2) (p2)

5 r7 = r4 + r6 r7 = r4 + r6 r7 = r4 + r6

6 r4 = r7 - 1 (p1) r4 = r7 - 1 (p1) (p1)

7 r9 = r9 / 2 (p2) (p2) (p2)
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Dataflow Analysis of Predicated Code

• Traditional dataflow requires reverse if-conversion (RIC)

• RIC of some codes is exponential (wc: 5,20,80,240,...)

• Factoring reduces order of complexity (wc: 8,15,22,28,...)

RIC of one iter. (width 5)

Code example (wc)

RIC of code with 2x unroll (width 20)



SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Compile-Time Memory Disambiguation

• Maximize the efficiency of the memory system
– Eliminate unnecessary loads

– Reorder loads past independent stores to hide the load latency

– Instruct the hardware about the possible dependence between loads
and stores to prevent run-time mis-speculation

• Indirect memory accesses through pointers
– Dependence between *p and *q is not obvious

• Function side-effects
– Analysis between *p and *q difficult when foo(&p, &q) is present

• Efficient and effective interprocedural alias analysis
– Trade-off between accuracy and complexity

– Comparable resolution for stack and heap objects
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Example

f1 f2

f3

f4

f5

s q
p

*v2

*v1

f1() {
f3(s1, &i, &j);
*s1->p = 10;
i = *s1->q + i;
(*s1->fp)(s1);

}

fp
f5

f2() {
f3(s2, &j, &i);
*s2->p = 10;
i = *s2->q + i;

}

f3(s, v1, v2) {
s->p = v1;
s->q = v2;
s->fp = f5;
f4(s);

}

s2 q
p

i

j

fp
f5

s1 q
p

j

i

fp
f5
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Interprocedural Points-to Analysis

s1 q
p

?

?

fp
?

s

i

j

v1

v2

s q
p

*v2

*v1

fp
f5

s1 q
p

j

i

fp
f5

• Flow-Insensitive function-level points-to templates

• Context-Sensitive exchange of function-level points-to templates
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Object Elevation

• Report interprocedurally accessed callee objects to the caller

• Not all accessible objects are visible
– Heap objects allocated in the callee

– Indirectly accessed non-local variables

• Objects accessed in the callee and accessible in the caller
are mapped to the caller with encoded object name

• Object names are encoded by the access path
– *s => s*

– s->p => s*.offset_of_p

– s->p->q => s*.offset_of_p*.offset_of_q
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Working Example - 132.ijpeg in SPEC95

• Contains 477 functions and 25,889 lines of code

• Spends 200 seconds and 18MB of memory in analysis

• 229 of 266 indirect call-sites are converted into direct ones

f6

f3f7

f3(&s1, &i, &j);
f7(s1);

f?

*s->p = 10;
*s->q = 20;
(*s->fp)(s);

s1s

i

j

v1

v2 s1 q
p

j

i

fp
f5

t = malloc();
t->p = v1;
t->q = v2;
t->fp = f5;
*s = t;

Prior to object
elevation

After object
elevation
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Compile-Time Memory Disambiguation
• Potential performance enhancements

– Eliminates redundant loads (*s->fp)

– Reorders loads past independent stores (*s->q and *s->p)

– Prevents run-time mis-speculation (i and *s->p)

• Challenges of interprocedural pointer analysis
– Maintaining both efficiency and accuracy

• Flow-insensitive and context-sensitive

– Providing comparable results for stack- and heap-pointers

• Object elevation

• Working example - ijpeg in SPEC95
– 477 functions and 25,889 lines of code

– Analysis consumes 200 seconds and 18MB of memory

– 229 of 266 indirect call-sites converted into direct ones

– 30% performance improvement observed

f1 f2

f3

f4

f5

s q
p

j

i

(*s->fp)(s);
*s->p = 10;
i = *s->q + i;

fp
f3
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Debugging optimized code

• Motivation
– optimization becomes default when compiling EPIC code

– software validation issue: what is debugged is what gets shipped

• Provide meaningful information without misleading users
– truthful behavior

• make the user aware of optimization effects and surprising outcomes

– expected behavior
• hide the effects of optimization

• current focus of most research and development efforts
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Basic idea of recovering expected behavior

• Unexpected behavior caused by
– program states updated prematurely or too late

– program states not available

• Basic idea
– suspend the execution early

– control the execution of all the instructions necessary for the
recovery (forward recovery)

– compile required program states

S1: a = b + c
S2: x = 2
S3: y = z * 3

i1: ld r1, b <1>
i2: ld r2, c <1>
i3: ld r5, z <3>
i4: mul r6, r5, 3 <3>
i5: mov r4, 2 <2>
i6: add r3, r1, r2 <1>

suspend execution

Should have been
executed
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Issues need to be addressed

• When to take over execution and when to stop forward recovery?
– original execution order of instructions has to be tracked

– instructions might be moved up to different paths leading to the breakpoint
or down to different paths starting from the breakpoint

I1(S1)
I1’(S4)
I5 (S4)

I2(S2)
I3(S3)
I4(S3)

A

B

C D

E

F

I1(S1)
I1’(S4)
I5 (S4)

I2(S2)
I3(S3)
I4(S3)

A

B

C D

E

F

I3’(S3)

I4’(S3)

I1’’(S2,S4)

A

B

D

E

F

I3’(S3)

I4’(S3)

breakpoint
I5 (S4)
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Issues need to be addressed (continued)

• How does the debugger confirm a source breakpoint?
– some object locations which are control equivalent to the

breakpoint need to be identified

– boolean conditions have to be incorporated sometimes

• How does forward recovery work?
– executing everything or selectively

– breakpoints and exceptions need to be reported in the expected
order

• Where are the locations of variables at run-time?
– run-time location of a variable may vary or not exist at all at

different points of the program
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Summary of a new debugging paradigm

• The compiler needs to preserve and maintain (besides the
traditional debugging information)
– original execution order of instructions

– source statement instance information

– breakpoint confirmation information

– variable run-time location information

• The debugger needs to determine (using the above
information)
– when to suspend the normal execution

– what instructions should be executed

– where to find the variable values

– how to ensure the program behavior consistent with what the user
expects



SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Debugging of Optimized Code

• Increased importance due to EPIC
– optimization essential in EPIC code

– need to debug software while under test

• Solution must not mislead users
– expected behavior or truthful behavior

• Keys to providing expected behavior
– mappings between source breakpoints

and object code locations

– tracking run-time locations of variables

– recovery of the expected variable values

I1’(S4)I1(S1)
I2(S2)
I3(S3)
I4(S3)

optimization

break-
point

post-breakpoint

I2(S2)
I4(S3)

I1’’(S1,S4)

I3’(S3)

pre-breakpoint
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Outlook
• Compilers critical to the performance of EPIC uP’s

– Use of predication and speculation is a serious challenge

– Any misuse will lead to performance loss.

– Brand new algorithms will be deployed in the EPIC compilers.

– Existing software development models must be supported.

• Expect performance robustness issues
– Awesome performance leap seen for some applications.

– Less for others due to limitations of analyses and optimizations.

– It can take years for the performance gain to be universal.

– A lot of research activities needed, www.trimaran.org.

• Evolution of EPIC architectures
– Revisions of architectures are likely as compilers mature.

– Code size and power consumption are critical for embedded EPICs.


