
SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

EPIC Architectures and
Compiler Technology

Wen-mei Hwu

Department of Electrical and Computer Engineering

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

IMPACT Compiler Group
http://www.crhc.uiuc.edu/IMPACT/

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Microprocessor Vision 1999

• UI/HP/Intel research coalition formed in 1992

• Goals
– ILP architecture features to greatly increase productive IPC

• eliminate branches and control dependences

• support software to approach global scheduling

• control code size explosion

– Adaptive management of cache and bus hierarchy
• reduce memory related stall cycles

– Support software migration
• support fine-grain mixture of old and new code

– No compromise on cycle time

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Microprocessor Microarchitecture

Main Memory

100 cycle latency

L2 Cache
non-blocking
1M-byte, 4-way
64B block

System Bus Backside Bus
Interface

L1 Cache

non-blocking
16K-byte, 2-way
32B block

BTB
1K
direct-mapped
2-level

I-Fetch Unit

I-Cache
32K-byte
direct-mapped
64B block (split)

Instruction Decoder

Register Alias Table
(64 predicate and 128 regular) Reorder Buffer

Architecture
Register File

2 Memory Units

1 Floating Point
Unit

1 Branch Unit

2 Integer Units

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

EPIC Compiler Technology Overview

If-Conversion

Classical Optimization

Predicate Optimization

ILP Optimization

Scheduling/Partial
Reverse If-Conversion

Register Allocation

Code Generation

D
eb

ug
gi

ng
o

fO
p

tim
iz

ed
C

od
e

Predicated
Dataflow

Predicate
Analysis

Source

Memory
Disambiguation

Machine
Description

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Predicated Execution

• Conditional execution of instructions based on a Boolean
source operand

• Execution model
– Load r1, r2, r3 <p1>

– If p1 is TRUE, instruction executes normally

– If p1 is FALSE, instruction treated as NOP (with some exceptions)

• Provides compiler with an alternative to guarding
instruction execution with branches

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Instruction Set Support for Predicated
Execution

• Full Predication Support
– Predicate defining instructions

– Full set of predicated instructions

– Separate register file

– Best performance

• Partial Predication Support
– Limited set of predicated instructions added to existing ISA

(CMOV, SELECT)

– Brings some performance increase to existing ISA’s

• Dynamic Predication Support
– No ISA change needed

– Smallest performance gain

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Predicate Defining Instructions
(HPL PlayDoh Spec)

pred_<cmp > P1 <type>, P2 <type>, src1, src2 (Pin)

• < cmp > - comparison type: =, >, <, etc.

• < type>
– Unconditional (U, U)

– OR-type (OR, OR)

– AND-type (AN, AN)

– Conditional (C, C)

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Unconditional Predicate Defines

• Handle blocks executed on one condition
if (a < 10)

c = c + 1
else

if (b > 20)
d = d + 1

else
e = e + 1

pred_ge p1(U), p2(U), a, 10
add c, c, 1 (p2)
pred_le p3(U), p4(U), b, 20 (p1)
add d, d, 1 (p4)
add e, e, 1 (p3)

bge, a, 10, L1

add c, c, 1
jump L3

ble b, 20, L2

add d, d, 1
jump L3

add e, e, 1L2:

L1:

L3:

F T

F T

Pin Comparison U U

Pout

0
0
1
1

0
1
0
1

0
0
0
1

0
0
1
0

p2 p1

p3p4

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

if (a && b)
c = c + 1;

else
d = d + 1;

pred_clr p1
pred_eq p1(OR), p2(U), a, 0
pred_eq p1(OR), p3(U), b, 0 (p2)
add c, c, 1 (p3)
add d, d, 1 (p1)

beq, a, 0, L1

Pin Comparison OR OR

Pout

0
0
1
1

0
1
0
1

-
-
-
1

-
-
1
-

beq b, 0, L1

add d, d, 1add c, c, 1
jump L2

L1:

L2:

F T

F T

OR-type Predicate Defines

• Handle blocks executed on multiple conditions

p2

p1
p3

a && b
a || b

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

if (a && b)
c = c + 1;

else
d = d + 1;

pred_clr p1
pred_set p3
pred_eq p1(OR), p3(AND), a, 0
pred_eq p1(OR), p3(AND), b, 0
add c, c, 1 (p3)
add d, d, 1 (p1)

beq, a, 0, L1

Pin Comparison AND AND

Pout

0
0
1

1

0
1
0
1

-
-

-
-

0 -

beq b, 0, L1

add d, d, 1add c, c, 1
jump L2

L1:

L2:

F T

F T

- 0

AND-type Predicate Defines

• More efficiently handle blocks executed on multiple
conditions

p1
p3

a && b
a || b

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Predication Benefits

• Eliminates branches in exchange for increased resource
subscription and/or dependence height
– Reduction in branch resource consumption

– Reduction in total branch misprediction penalty

• Aggressive control flow transformations
– Height reduction and aggressive branch motion

– Logic minimization of programmatic decision sequence

• Aggressive optimizations in the presence of control flow
– Simplifies static scheduling and optimization along multiple paths

– Controls code size explosion, makes some optimizations feasible

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Predicate-Domain Control Flow Transformation

• Predication allow general restructuring of control flow

• Predication allows significant decision height reduction

T

p1

p2 p4

p3 p5 p6

p8

T

p7

p3

p5

p8

p3 p5 p8

T

p3

p5

p8

T

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Path Height Reduction: Concept

• Path classes
– dependence limited

– resource limited

• Optimizations can be
performed to exchange
dependence height for
resource usage

• Goal: balance resource
height and dependence
height toreduce effective
height of path

Sequential Code

Saturated Code

• Height goes from 6 to 2
• Operation count went from

10 to 14
• Extra operations absorbed by

processor width

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Fully Resolved Predicates: Motivation

• Typical loops have many
infrequently taken exit branches

• Infrequent exit branches
– Impede code motion

– Increase length of path to
frequently taken branches

– Consume valuable branch
resources

• Goal: Use predication to
enhance performance in the
presence ofeasily predicted
branches

2%

4%

1%

1%

92%

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Fully Resolved Predicates: Concept

• Partially Resolved Predicates (PRP)
– Instruction execution is guarded by predicates or branches.

– Some control dependencies remain in predicated code.

• Fully Resolved Predicates (FRP)
– Instructions are guarded by predicates even if guarded by branches.

– All control dependencies within the region are eliminated.

– Any instruction can be hoisted above a branch without speculation.

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

FRP: Computation

Partially Resolved Predicates Fully Resolved Predicates

Cond2

Cond1

A

B C

D

p1=cond1 p2=cond1

p3=cond2 || cond1

cond2

cond1

A

B C

D

T F

T F

p1=cond1 p2=cond1

cond2

cond1

A

B C

D

T F

T F

Hyperblock
Exit

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

FRP: Case Study

• grep function “execute” inner loop

• Segment accounts for about 40% of total execution time.

• Source:
for (;;)

{

if (p2 >= ebp)

/* Excluded from Hyperblock */

if ((c = *p2++) == ‘\n’)

break;

if(c)

if (p1 < &linebuf[1024-1])

*p1++ = c;

}

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Height Reduction by Predication and Speculation

• FRP Predication reduced height via control flow restructuring
• Data speculation reduced height via reordering of possibly

conflicting loads and stores

Original Predicated Predicated and
Height Reduced

Unrolled with
data speculation

L

S

B

B
B
B
J

L

S
J

J
J
J

J
P

P
P
P

L

S

P P

PP
P

P

P
P

J

J
J
J

J

L

S

P P

P P
P

P

P
P

J

J
J
J

J
L

S

P P

PP
P
P

P
P

J

J
J
J

J

Code example (grepexecute)

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Code Size Control using Predication

Code example(099.gocopyshape):

• Predication reduced code size by instruction merging (in example 35%)

Original
Predicated

B

S

L

J
S

B

S

L

J
S

B

S

L

J
S

B

S

L

J
S

S

L

J
S

B

S

L

J
S

B

S

L

J
S

B

P

X

P P P P P
P L

X X

S S S S

X

Code example(MediaBench Experimental Image Compressionreflect1):
Original (Overhead=8/17 instrs (47%))Optimized (6/19 (30%)) Predicated (3/13 (23%))

B1

J

B2

B1

J

J

B1

J

B1

J

B2 B2

J

J

P1
I0

I1

I3 I4 I5 I6

I0
I0I1

I7 I8

I9

I2 I2I2
I4I3I3

I5
I8

I9

I7 I6

I2

I7 I8
I9I8

I7

P3
I1
P2

I3 I4 I5 I6

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Analysis of Predicated Codes

• Live Variable Analysis Example:
– Without Predicate Aware Dataflow (Only

instructions on TRUE predicate can kill.)
• R7 is defined and killed by instruction 5; R7 is

used by instruction 6.

• R7’s live range is (5,6).

• R3 is not defined and killed by instruction 3 in all
cases because it is predicated on P1. R3 is used
by instruction 4.

• R3’s live range is (1,2,3,4) and live out the top of
the CB.

– With Predicate Aware Dataflow
• R7’s live range is also (5,6).

• R3’s live range is (3,4) because instruction 3
defines R3 for all uses by instruction 4. This is
known by studying the relation of P1 to P2.

1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1)

3 r3 = r4 + r5 (p1)

4 r8 = r3 + 1 (p2)

5 r7 = r4 + r6

6 r4 = r7 - 1 (p1)

7 r9 = r9 / 2 (p2)

• Dataflow without regard to predicates can lead to conservative results.

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

The Predicate Flow Graph
1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1)

3 r3 = r4 + r5 (p1)

4 r8 = r3 + 1 (p2)

5 r7 = r4 + r6

6 r4 = r7 - 1 (p1)

7 r9 = r9 / 2 (p2)

1 (p1un) = (r1 < 0)

2 (p2un) = (r2 < 0) (p1) (p2un) = (p1)

3 r3 = r4 + r5 (p1) (p1)

4 r8 = r3 + 1 (p2) (p2) (p2)

5 r7 = r4 + r6 r7 = r4 + r6 r7 = r4 + r6

6 r4 = r7 - 1 (p1) r4 = r7 - 1 (p1) (p1)

7 r9 = r9 / 2 (p2) (p2) (p2)

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Dataflow Analysis of Predicated Code

• Traditional dataflow requires reverse if-conversion (RIC)

• RIC of some codes is exponential (wc: 5,20,80,240,...)

• Factoring reduces order of complexity (wc: 8,15,22,28,...)

RIC of one iter. (width 5)

Code example (wc)

RIC of code with 2x unroll (width 20)

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Compile-Time Memory Disambiguation

• Maximize the efficiency of the memory system
– Eliminate unnecessary loads

– Reorder loads past independent stores to hide the load latency

– Instruct the hardware about the possible dependence between loads
and stores to prevent run-time mis-speculation

• Indirect memory accesses through pointers
– Dependence between *p and *q is not obvious

• Function side-effects
– Analysis between *p and *q difficult when foo(&p, &q) is present

• Efficient and effective interprocedural alias analysis
– Trade-off between accuracy and complexity

– Comparable resolution for stack and heap objects

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Example

f1 f2

f3

f4

f5

s q
p

*v2

*v1

f1() {
f3(s1, &i, &j);
*s1->p = 10;
i = *s1->q + i;
(*s1->fp)(s1);

}

fp
f5

f2() {
f3(s2, &j, &i);
*s2->p = 10;
i = *s2->q + i;

}

f3(s, v1, v2) {
s->p = v1;
s->q = v2;
s->fp = f5;
f4(s);

}

s2 q
p

i

j

fp
f5

s1 q
p

j

i

fp
f5

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Interprocedural Points-to Analysis

s1 q
p

?

?

fp
?

s

i

j

v1

v2

s q
p

*v2

*v1

fp
f5

s1 q
p

j

i

fp
f5

• Flow-Insensitive function-level points-to templates

• Context-Sensitive exchange of function-level points-to templates

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Object Elevation

• Report interprocedurally accessed callee objects to the caller

• Not all accessible objects are visible
– Heap objects allocated in the callee

– Indirectly accessed non-local variables

• Objects accessed in the callee and accessible in the caller
are mapped to the caller with encoded object name

• Object names are encoded by the access path
– *s => s*

– s->p => s*.offset_of_p

– s->p->q => s*.offset_of_p*.offset_of_q

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Working Example - 132.ijpeg in SPEC95

• Contains 477 functions and 25,889 lines of code

• Spends 200 seconds and 18MB of memory in analysis

• 229 of 266 indirect call-sites are converted into direct ones

f6

f3f7

f3(&s1, &i, &j);
f7(s1);

f?

*s->p = 10;
*s->q = 20;
(*s->fp)(s);

s1s

i

j

v1

v2 s1 q
p

j

i

fp
f5

t = malloc();
t->p = v1;
t->q = v2;
t->fp = f5;
*s = t;

Prior to object
elevation

After object
elevation

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Compile-Time Memory Disambiguation
• Potential performance enhancements

– Eliminates redundant loads (*s->fp)

– Reorders loads past independent stores (*s->q and *s->p)

– Prevents run-time mis-speculation (i and *s->p)

• Challenges of interprocedural pointer analysis
– Maintaining both efficiency and accuracy

• Flow-insensitive and context-sensitive

– Providing comparable results for stack- and heap-pointers

• Object elevation

• Working example - ijpeg in SPEC95
– 477 functions and 25,889 lines of code

– Analysis consumes 200 seconds and 18MB of memory

– 229 of 266 indirect call-sites converted into direct ones

– 30% performance improvement observed

f1 f2

f3

f4

f5

s q
p

j

i

(*s->fp)(s);
*s->p = 10;
i = *s->q + i;

fp
f3

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Debugging optimized code

• Motivation
– optimization becomes default when compiling EPIC code

– software validation issue: what is debugged is what gets shipped

• Provide meaningful information without misleading users
– truthful behavior

• make the user aware of optimization effects and surprising outcomes

– expected behavior
• hide the effects of optimization

• current focus of most research and development efforts

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Basic idea of recovering expected behavior

• Unexpected behavior caused by
– program states updated prematurely or too late

– program states not available

• Basic idea
– suspend the execution early

– control the execution of all the instructions necessary for the
recovery (forward recovery)

– compile required program states

S1: a = b + c
S2: x = 2
S3: y = z * 3

i1: ld r1, b <1>
i2: ld r2, c <1>
i3: ld r5, z <3>
i4: mul r6, r5, 3 <3>
i5: mov r4, 2 <2>
i6: add r3, r1, r2 <1>

suspend execution

Should have been
executed

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Issues need to be addressed

• When to take over execution and when to stop forward recovery?
– original execution order of instructions has to be tracked

– instructions might be moved up to different paths leading to the breakpoint
or down to different paths starting from the breakpoint

I1(S1)
I1’(S4)
I5 (S4)

I2(S2)
I3(S3)
I4(S3)

A

B

C D

E

F

I1(S1)
I1’(S4)
I5 (S4)

I2(S2)
I3(S3)
I4(S3)

A

B

C D

E

F

I3’(S3)

I4’(S3)

I1’’(S2,S4)

A

B

D

E

F

I3’(S3)

I4’(S3)

breakpoint
I5 (S4)

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Issues need to be addressed (continued)

• How does the debugger confirm a source breakpoint?
– some object locations which are control equivalent to the

breakpoint need to be identified

– boolean conditions have to be incorporated sometimes

• How does forward recovery work?
– executing everything or selectively

– breakpoints and exceptions need to be reported in the expected
order

• Where are the locations of variables at run-time?
– run-time location of a variable may vary or not exist at all at

different points of the program

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Summary of a new debugging paradigm

• The compiler needs to preserve and maintain (besides the
traditional debugging information)
– original execution order of instructions

– source statement instance information

– breakpoint confirmation information

– variable run-time location information

• The debugger needs to determine (using the above
information)
– when to suspend the normal execution

– what instructions should be executed

– where to find the variable values

– how to ensure the program behavior consistent with what the user
expects

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Debugging of Optimized Code

• Increased importance due to EPIC
– optimization essential in EPIC code

– need to debug software while under test

• Solution must not mislead users
– expected behavior or truthful behavior

• Keys to providing expected behavior
– mappings between source breakpoints

and object code locations

– tracking run-time locations of variables

– recovery of the expected variable values

I1’(S4)I1(S1)
I2(S2)
I3(S3)
I4(S3)

optimization

break-
point

post-breakpoint

I2(S2)
I4(S3)

I1’’(S1,S4)

I3’(S3)

pre-breakpoint

SUN Microsystems Seminar

Compiler Technology for EPIC Architectures
Wen-mei Hwu IMPACTIMPACTIMPACT

December 18, 1998

Outlook
• Compilers critical to the performance of EPIC uP’s

– Use of predication and speculation is a serious challenge

– Any misuse will lead to performance loss.

– Brand new algorithms will be deployed in the EPIC compilers.

– Existing software development models must be supported.

• Expect performance robustness issues
– Awesome performance leap seen for some applications.

– Less for others due to limitations of analyses and optimizations.

– It can take years for the performance gain to be universal.

– A lot of research activities needed, www.trimaran.org.

• Evolution of EPIC architectures
– Revisions of architectures are likely as compilers mature.

– Code size and power consumption are critical for embedded EPICs.

