
Predication Framework

A Global Predication Compilation Framework

David I. August

Wen-mei W. Hwu
IMPACT Compiler Group

University of Illinois - Urbana/Champaign

David I. August
IMPACT Research Group

- 1 -

Predication Framework Outline

Outline
� Predication Background

� Predication Frameworks

� Predicate Optimization

– Fully Resolved Predicates

– Code Specialization

– Control Logic Optimization

� Ultrablock Predication Framework

� Predicate Analysis

� Predicate Dataflow

David I. August
IMPACT Research Group

- 2 -

Predication Framework Background

Predication Overview
� Conditional execution of an instruction based on a Boolean source operand

� Execution model

– r1 = r1 + 1hp1i

– If p1 is TRUE, r1 is incremented.
– If p1 is FALSE, r1 is unchanged.

� Provides the compiler with an alternative to guarding instructions with con-
ditional branches.

� Levels of predication support

– Full Predication Support

� Predicate defining instructions

� Full set of predicated instructions

� Separate register file
– Partial Predication Support - Existing ISA is enhanced with instructions

such as CMOV or SELECT.
– Dynamic Predication Support - ISA is unchanged.

David I. August
IMPACT Research Group

- 3 -

Predication Framework Background

Predication
� Architectures supporting predication:

– Illiac IV - vector masks

– Cydrome’s Cydra 5 - full predication

– HPL’s PlayDoh - generalized Cydra 5

– Intel and HP’s IA-64 - full predication

� If-Conversion is the process by which control
flow is removed through the use of predication.

� Reverse If-Conversionis the process by which
predication is removed through the introduction
of control flow.

D if TRUE

A

B C

D

A if TRUE

B if P

C if P

David I. August
IMPACT Research Group

- 4 -

Predication Framework Background

Uses of Predication
� Predicated Representation- A program representation in which instructions

can be guarded by a Boolean source operand

– Efficient model for compiler optimization and scheduling

– Control transformations can be performed as simple optimizations.

– Removal of control dependences affords optimization and scheduling
freedom.

� Predicated Execution- An architectural model which supports direct exe-
cution of the predicated representation

– Allows removal of branch mispredictions through elimination of branches

– Increases ILP by allowing concurrent execution of multiple program
paths

– Enables predicate-specific optimizations such as height reduction

David I. August
IMPACT Research Group

- 5 -

Predication Framework Background

Predicate Defining Instructions

Pd0<type0>, Pd1<type1> = (src0 cond src1) hPgi

� cond comparison:=, <, �, etc.

� typei assignment type:

– UT/UF - Unconditional

– OT/OF - Wired-or

– AT/AF - Wired-and

– CT/CF - Conditonal

– _T/_F - Disjunctive

– ^T/^F - Conjunctive

David I. August
IMPACT Research Group

- 6 -

Predication Framework Background

Unconditional Predicate Define
Generate a predicate for a block which executes on a single condition.

if (a < 10)
c = c + 1;

else
if (b < 20)

d = d + 1;
else

e = e + 1;

p1UT , p2UF = (a < 10)

c = c + 1hp1i

p3UT , p4UF = (b < 20) hp2i

d = d + 1hp3i

e = e + 1hp4i

add c, c, 1

jump L3

L1:

p3 add d, d, 1

jump L3

add e, e, 1

L3:

blt b, 20, L2

blt a, 10, L1
T F

T F

L2:

p2

p4

p1

Pd

Pg ComparisonUT UF
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 0

David I. August
IMPACT Research Group

- 7 -

Predication Framework Background

Wired-OR Predicate Define

Generate a predicate for a block which executes on multiple conditions.

if (a && b)
c = c + 1;

else
d = d + 1;

p1 = 0

p1OT , p2UF = (a == 0)

p1OT , p3UF = (b == 0) hp2i

c = c + 1hp3i

d = d + 1hp1i

F
beq a, 0, L1

p1

beq b, 0, L1

add c, c, 1

jump L3

F

L1:

L2:

T

add d, d, 1

T

p3

p2

Pd

Pg ComparisonOT OF
0 0 – –
0 1 – –
1 0 – 1
1 1 1 –

David I. August
IMPACT Research Group

- 8 -

Predication Framework Background

Wired-AND Predicate Define
Generate a predicate for a block which executes on multiple conditions.

if (a && b)
c = c + 1;

else
d = d + 1;

p1 = 0

p2 = 1

p1OT , p2AF = (a == 0)

p1OT , p2AF = (b == 0)

c = c + 1hp2i

d = d + 1hp1i

F

p1

beq a, 0, L1

beq b, 0, L1

add c, c, 1

jump L3

F

L1:

L2:

T

add d, d, 1

T

p2

Pd

Pg ComparisonAT AF
0 0 - -
0 1 - -
1 0 0 -
1 1 - 0

David I. August
IMPACT Research Group

- 9 -

Predication Framework Background

The If-Conversion During Scheduling Framework
� Best time to balance control flow and predication

� Minimizes effect on existing compiler

� Naive - doesn’t use predicated representation

Scheduling

Original Code
Code

If-Conversion

Scheduled

David I. August
IMPACT Research Group

- 10 -

Predication Framework Background

The Hyperblock Compilation Framework
� Current state-of-the-art in the IMPACT compiler.

� Framework is designed to generate efficient code for predicated execution.

� Early heuristic hyperblock formation estimates final code characteristics:

Traditional)
(heuristic)

(Predicate,
ILP, and

Scheduled

Formation
Hyperblock Optimizations Scheduling

Original Code Hyperblock Optimized
Hyperblock Code

David I. August
IMPACT Research Group

- 11 -

Predication Framework Background

Problems with Hyperblock Compilation Framework
� Phase Ordering

– Strict phase-ordered creation of hyperblocks—early heuristic hyperblock
formation, optimizations, then scheduling.

– Interaction between resources and dependences is unpredictable.

– Subsequent optimizations invalidate decisions made.

– Estimates used in early heuristic hyperblock formation are not suffi-
ciently fine-grained to include partial paths.

� Compilation Block Scope

– Basic unit of compilation cannot contain loops.

– Conservative hyperblock formation limits scheduling and optimization
potential.

– Conservative scope limits the types of transformations which can be ap-
plied.

David I. August
IMPACT Research Group

- 12 -

Predication Framework Background

Phase Ordering - The Optimization Problem
� Optimization changes a good hyperblock decision into a poor one:

Traditional)
(heuristic)

(Predicate,
ILP, and

Code

Formation
Hyperblock SchedulingOptimizations

Original Code Hyperblock ScheduledOptimized
Hyperblock

David I. August
IMPACT Research Group

- 13 -

Predication Framework Partial Reverse If-Conversion

Partial Reverse If-Conversion
� Overcomes the phase ordering problem

� Balances control flow and predication at schedule time

� Creates control flow after optimizations in the predicated representation

If-Conversion
Partial Reverse

(Predicate,
ILP, and

Traditional)
(aggressive)

andFormation
Hyperblock SchedulingOptimizations

Original Code Hyperblock ScheduledOptimized
Hyperblock Code

David I. August
IMPACT Research Group

- 14 -

Predication Framework Partial Reverse If-Conversion

Partial Reverse If-Conversion
� Partial Reverse If-Conversion Decision:

– Two Part Decision:WhichPredicate,WhereIn Schedule

– Consider: Resources, Dependence height, Hazards, Execution frequency

� Partial Reverse If-Conversion Mechanics:

1

2

3 <p2>

<p1>

<TRUE>

<p2>

<p1>

<p2>

<TRUE>1

2

3

4
5

jump
4

7

6

<TRUE>

<TRUE>

<p2>

<p1>

5

7

6 6

BEFORE AFTER

T2 =

T1 = T2

T3 = T1

r1 =
T3 = T1

T2 =

T1 = T2

r1 =

r2 =

r3 = T3

r2 =r2 =

r3 = T3

Assume:
r1, r2, r3 are live out
T1, T2, T3 are not live out

<p1>

<TRUE>

<p2>

<TRUE>

<TRUE>

<p1>

<p2>

<TRUE>

p2

David I. August
IMPACT Research Group

- 15 -

Predication Framework Partial Reverse If-Conversion

Partial Reverse If-Conversion Algorithm

Oper 1
p1 = Cond
Jump p1

Oper 1
p1 = Cond
Jump p1

Oper 2

Oper 1
p1 = Cond
Oper 1 Oper 1

p1 = Cond
Jump p1

Oper 2
Oper 3

<p1>

<p1>
p1 = Cond

Ready:

Oper 3 <p1>
Oper 2

Ready:

Jump p1

With Partial Reverse If-Conversion

Ready:
Oper 2

<p1> <p1> <p1>Oper 5

Oper 3 <p1>
Oper 4 <p1>

<p1>

Without Partial Reverse If-Conversion
Oper 1
p1 = Cond
Oper 2
Oper 3 <p1>
Oper 4 <p1>

<p1>Oper 5

<p1>

p1 = Cond

Oper 3 <p1>

Oper 4 <p1>

Oper 5 <p1>

Oper 1

?

David I. August
IMPACT Research Group

- 16 -

Predication Framework Partial Reverse If-Conversion

Code Example
� In the function mark in the benchmark022.li:

– 2 of 20 possible reverse if-conversions performed.

– 58764 cycles! 38942 cycles! 34827 cycles
 (cb 4 5185.000000 <H>)
 (op 9 ld_c [(r 118 i)] [(r 4 i)(i 1)])
 (op 10 and [(r 119 i)] [(r 118 i)(i 1)])
 (op 213 bne [] [(r 119 i)(i 0)(cb 10)])
 (op 14 or [(r 120 i)] [(r 118 i)(i 1)])
 (op 15 st_c [] [(r 4 i)(i 1)(r 120 i)])
 (op 17 ld_c [(r 115 i)] [(r 4 i)(i 0)])
 (op 195 pred_eq [(r 46 p_ot)(r 48 p_uf)] [(r 115 i)(i 3)])
 (op 197 pred_eq <(r 48 p)> [(r 47 p_ot)(r 49 p_uf)] [(r 115 i)(i 6)])
 (op 196 pred_eq <(r 49 p)> [(r 46 p_ot)(r 50 p_uf)] [(r 115 i)(i 4)])
 (op 198 pred_ne <(r 49 p)> [(r 47 p_ot)] [(r 115 i)(i 4)])
 (op 29 ld_i <PM> <()(r 46 p)> [(r 121 i)] [(r 4 i)(i 4)])
 (op 30 ne <(r 46 p)> [(r 7 i)] [(r 121 i)(i 0)])
 (op 202 pred_ne <(r 50 p)> [(r 51 p_ut)] [(r 115 i)(i 1)])
 (op 203 pred_ne <(r 51 p)> [(r 52 p_ut)] [(r 115 i)(i 2)])
 (op 204 pred_ne <(r 52 p)> [(r 53 p_ut)] [(r 115 i)(i 5)])
 (op 214 pred_eq <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 7)])
 (op 215 pred_eq <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 10)])
 (op 216 pred_ne <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 8)])
 (op 336 jump <(r 158 p)> [] [(cb 89)])
 (op 109 mov <(r 47 p)> [(r 7 i)] [(i 0)])
 (op 217 beq [] [(r 7 i)(i 0)(cb 20)])
 (op 35 or [(r 122 i)] [(r 120 i)(i 2)])
 (op 36 st_c [] [(r 4 i)(i 1)(r 122 i)])
 (op 41 st_i [] [(r 4 i)(i 4)(r 5 i)])
 (op 38 mov [(r 5 i)] [(r 4 i)])
 (op 282 mov [(r 124 i)] [(r 4 i)])
 (op 319 mov [(r 4 i)] [(r 121 i)])
 (op 260 ld_c [(r 125 i)] [(r 121 i)(i 1)])
 (op 261 and [(r 126 i)] [(r 125 i)(i 1)])
 (op 262 bne [] [(r 126 i)(i 0)(cb 10)])
 (op 263 or [(r 127 i)] [(r 125 i)(i 1)])
 (op 264 st_c [] [(r 121 i)(i 1)(r 127 i)])
 (op 265 ld_c [(r 128 i)] [(r 121 i)(i 0)])
 (op 266 pred_eq [(r 65 p_ot)(r 67 p_uf)] [(r 128 i)(i 3)])
 (op 267 pred_eq <(r 67 p)> [(r 66 p_ot)(r 68 p_uf)] [(r 128 i)(i 6)])
 (op 268 pred_eq <(r 68 p)> [(r 65 p_ot)(r 69 p_uf)] [(r 128 i)(i 4)])
 (op 269 pred_ne <(r 68 p)> [(r 66 p_ot)] [(r 128 i)(i 4)])
 (op 270 ld_i <PM> <()(r 65 p)> [(r 129 i)] [(r 121 i)(i 4)])
 (op 271 ne <(r 65 p)> [(r 7 i)] [(r 129 i)(i 0)])
 (op 272 pred_ne <(r 69 p)> [(r 70 p_ut)] [(r 128 i)(i 1)])
 (op 273 pred_ne <(r 70 p)> [(r 71 p_ut)] [(r 128 i)(i 2)])
 (op 274 pred_ne <(r 71 p)> [(r 72 p_ut)] [(r 128 i)(i 5)])
 (op 275 pred_eq <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 7)])
 (op 276 pred_eq <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 10)])
 (op 277 pred_ne <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 8)])
 (op 331 jump <(r 157 p)> [] [(cb 88)])
 (op 278 mov <(r 66 p)> [(r 7 i)] [(i 0)])
 (op 279 beq [] [(r 7 i)(i 0)(cb 20)])
 (op 280 or [(r 130 i)] [(r 127 i)(i 2)])
 (op 281 st_c [] [(r 121 i)(i 1)(r 130 i)])
 (op 285 st_i [] [(r 121 i)(i 4)(r 124 i)])
 (op 283 mov [(r 5 i)] [(r 121 i)])
 (op 284 mov [(r 4 i)] [(r 129 i)])
 (op 286 jump_fs [] [(cb 4)])

 (cb 4 5185.000000)
 (op 17 ld_c <M> [(r 115 i)] [(r 4 i)(i 0)])
 (op 29 ld_i <PM> [(r 121 i)] [(r 4 i)(i 4)])
 (op 9 ld_c <M> [(r 118 i)] [(r 4 i)(i 1)])
 (op 282 mov <M> [(r 124 i)] [(r 4 i)])
 (op 195 pred_eq <M> [(r 46 p_ot)(r 48 p_uf)] [(r 115 i)(i 3)])
 (op 14 or <M> [(r 120 i)] [(r 118 i)(i 1)])
 (op 10 and <M> [(r 119 i)] [(r 118 i)(i 1)])
 (op 365 jump <M> <(r 48 p)> [] [(cb 90)])
 (op 213 bne <M> [] [(r 119 i)(i 0)(cb 10)])
 (op 30 ne <M> <(r 46 p)> [(r 7 i)] [(r 121 i)(i 0)])
 (op 15 st_c <M> [] [(r 4 i)(i 1)(r 120 i)])
 (op 217 beq <M> [] [(r 7 i)(i 0)(cb 20)])
 (op 41 st_i <M> [] [(r 4 i)(i 4)(r 5 i)])
 (op 38 mov <M> [(r 5 i)] [(r 4 i)])
 (op 270 ld_i <PM> [(r 129 i)] [(r 121 i)(i 4)])
 (op 35 or <M> [(r 122 i)] [(r 120 i)(i 2)])
 (op 36 st_c <M> [] [(r 4 i)(i 1)(r 122 i)])
 (op 265 ld_c <M> [(r 128 i)] [(r 121 i)(i 0)])
 (op 319 mov <M> [(r 4 i)] [(r 121 i)])
 (op 260 ld_c <M> [(r 125 i)] [(r 121 i)(i 1)])
 (op 266 pred_eq <M> [(r 65 p_ot)(r 67 p_uf)] [(r 128 i)(i 3)])
 (op 263 or <M> [(r 127 i)] [(r 125 i)(i 1)])
 (op 261 and <M> [(r 126 i)] [(r 125 i)(i 1)])
 (op 352 jump <M> <(r 67 p)> [] [(cb 91)])
 (op 262 bne <M> [] [(r 126 i)(i 0)(cb 10)])
 (op 271 ne <M> <(r 65 p)> [(r 7 i)] [(r 129 i)(i 0)])
 (op 264 st_c <M> [] [(r 121 i)(i 1)(r 127 i)])
 (op 279 beq <M> [] [(r 7 i)(i 0)(cb 20)])
 (op 280 or <M> [(r 130 i)] [(r 127 i)(i 2)])
 (op 283 mov <M> [(r 5 i)] [(r 121 i)])
 (op 284 mov <M> [(r 4 i)] [(r 129 i)])
 (op 281 st_c <M> [] [(r 121 i)(i 1)(r 130 i)])
 (op 285 st_i <M> [] [(r 121 i)(i 4)(r 124 i)])
 (op 286 jump_fs <M> [] [(cb 4)])

 (cb 90 599.000000 <HN>
 (op 405 bne <M> [] [(r 119 i)(i 0)(cb 10)])
 (op 406 st_c <M> [] [(r 4 i)(i 1)(r 120 i)])
 (op 407 pred_eq <M> [(r 47 p_ot)(r 49 p_uf)] [(r 115 i)(i 6)])
 (op 408 or <M> [(r 122 i)] [(r 120 i)(i 2)])
 (op 409 pred_eq <M> <(r 49 p)> [(r 46 p_ot)(r 50 p_uf)] [(r 115 i)(i 4)])
 (op 410 pred_ne <M> <(r 49 p)> [(r 47 p_ot)] [(r 115 i)(i 4)])
 (op 411 ne <M> <(r 46 p)> [(r 7 i)] [(r 121 i)(i 0)])
 (op 412 pred_ne <M> <(r 50 p)> [(r 51 p_ut)] [(r 115 i)(i 1)])
 (op 413 pred_ne <M> <(r 51 p)> [(r 52 p_ut)] [(r 115 i)(i 2)])
 (op 414 pred_ne <M> <(r 52 p)> [(r 53 p_ut)] [(r 115 i)(i 5)])
 (op 415 pred_eq <M> <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 7)])
 (op 416 pred_eq <M> <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 10)])
 (op 417 pred_ne <M> <(r 53 p)> [(r 158 p_ot)] [(r 115 i)(i 8)])
 (op 418 jump <M> <(r 158 p)> [] [(cb 89)])
 (op 419 mov <M> <(r 47 p)> [(r 7 i)] [(i 0)])
 (op 420 beq <M> [] [(r 7 i)(i 0)(cb 20)])
 (op 421 st_c <M> [] [(r 4 i)(i 1)(r 122 i)])
 (op 422 ld_c <M> [(r 128 i)] [(r 121 i)(i 0)])
 (op 423 st_i <M> [] [(r 4 i)(i 4)(r 5 i)])
 (op 424 mov <M> [(r 5 i)] [(r 4 i)])
 (op 425 mov <M> [(r 4 i)] [(r 121 i)])
 (op 426 ld_c <M> [(r 125 i)] [(r 121 i)(i 1)])
 (op 427 ld_i <PM> [(r 129 i)] [(r 121 i)(i 4)])
 (op 428 pred_eq <M> [(r 65 p_ot)(r 67 p_uf)] [(r 128 i)(i 3)])
 (op 429 pred_eq <M> <(r 67 p)> [(r 66 p_ot)(r 68 p_uf)] [(r 128 i)(i 6)])
 (op 430 or <M> [(r 127 i)] [(r 125 i)(i 1)])
 (op 431 and <M> [(r 126 i)] [(r 125 i)(i 1)])
 (op 432 bne <M> [] [(r 126 i)(i 0)(cb 10)])
 (op 433 pred_eq <M> <(r 68 p)> [(r 65 p_ot)(r 69 p_uf)] [(r 128 i)(i 4)])
 (op 434 st_c <M> [] [(r 121 i)(i 1)(r 127 i)])
 (op 435 pred_ne <M> <(r 68 p)> [(r 66 p_ot)] [(r 128 i)(i 4)])
 (op 436 ne <M> <(r 65 p)> [(r 7 i)] [(r 129 i)(i 0)])
 (op 437 pred_ne <M> <(r 69 p)> [(r 70 p_ut)] [(r 128 i)(i 1)])
 (op 438 or <M> [(r 130 i)] [(r 127 i)(i 2)])
 (op 439 pred_ne <M> <(r 70 p)> [(r 71 p_ut)] [(r 128 i)(i 2)])
 (op 440 pred_ne <M> <(r 71 p)> [(r 72 p_ut)] [(r 128 i)(i 5)])
 (op 441 pred_eq <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 7)])
 (op 442 pred_eq <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 10)])
 (op 443 pred_ne <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 8)])
 (op 444 jump <M> <(r 157 p)> [] [(cb 88)])
 (op 445 mov <M> <(r 66 p)> [(r 7 i)] [(i 0)])
 (op 446 beq <M> [] [(r 7 i)(i 0)(cb 20)])
 (op 447 mov <M> [(r 5 i)] [(r 121 i)])
 (op 448 mov <M> [(r 4 i)] [(r 129 i)])
 (op 449 st_c <M> [] [(r 121 i)(i 1)(r 130 i)])
 (op 450 st_i <M> [] [(r 121 i)(i 4)(r 124 i)])
 (op 451 jump_fs <M> [] [(cb 4)])

 (cb 91 167.165670 <HN>
 (op 384 bne <M> [] [(r 126 i)(i 0)(cb 10)])
 (op 385 pred_eq <M> [(r 66 p_ot)(r 68 p_uf)] [(r 128 i)(i 6)])
 (op 386 st_c <M> [] [(r 121 i)(i 1)(r 127 i)])
 (op 387 or <M> [(r 130 i)] [(r 127 i)(i 2)])
 (op 388 pred_eq <M> <(r 68 p)> [(r 65 p_ot)(r 69 p_uf)] [(r 128 i)(i 4)])
 (op 389 pred_ne <M> <(r 68 p)> [(r 66 p_ot)] [(r 128 i)(i 4)])
 (op 390 ne <M> <(r 65 p)> [(r 7 i)] [(r 129 i)(i 0)])
 (op 391 pred_ne <M> <(r 69 p)> [(r 70 p_ut)] [(r 128 i)(i 1)])
 (op 392 pred_ne <M> <(r 70 p)> [(r 71 p_ut)] [(r 128 i)(i 2)])
 (op 393 pred_ne <M> <(r 71 p)> [(r 72 p_ut)] [(r 128 i)(i 5)])
 (op 394 pred_eq <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 7)])
 (op 395 pred_eq <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 10)])
 (op 396 pred_ne <M> <(r 72 p)> [(r 157 p_ot)] [(r 128 i)(i 8)])
 (op 397 jump <M> <(r 157 p)> [] [(cb 88)])
 (op 398 mov <M> <(r 66 p)> [(r 7 i)] [(i 0)])
 (op 399 beq <M> [] [(r 7 i)(i 0)(cb 20)])
 (op 400 mov <M> [(r 5 i)] [(r 121 i)])
 (op 401 mov <M> [(r 4 i)] [(r 129 i)])
 (op 402 st_c <M> [] [(r 121 i)(i 1)(r 130 i)])
 (op 403 st_i <M> [] [(r 121 i)(i 4)(r 124 i)])
 (op 404 jump_fs <M> [] [(cb 4)])

David I. August
IMPACT Research Group

- 17 -

Predication Framework Partial Reverse If-Conversion

Performance Improvement

-40%

-20%

0%

20%

40%

60%

80%

100%

0
0

8
.e

sp
re

ss
o

0
2

2
.li

0
2

3
.e

q
n

to
tt

0
2

6
.c

o
m

p
re

ss

0
7

2
.s

c

0
8

5
.c

c1

1
3

2
.ij

p
e

g

1
3

4
.p

e
rl

cc
cp

cm
p

e
q

n

g
re

p

w
c

ya
cc

Benchmark

S
p

e
e

d
u

p

Hyperblock Framework
Partial RIC Framework

� No branch prediction penalty

� 4-issue: 1 branch, 2 integer, 2 memory, and 1 float

David I. August
IMPACT Research Group

- 18 -

Predication Framework Partial Reverse If-Conversion

Application Statistics

Benchmark Reverse If-ConversionsOpportunities
008.espresso 204 1552
022.li 50 393
023.eqntott 43 443
026.compress 11 56
072.sc 33 724
085.cc1 479 3827
132.ijpeg 134 1021
134.perl 42 401
cccp 77 1046
cmp 4 49
eqn 33 326
grep 3 103
wc 0 88
yacc 247 1976

David I. August
IMPACT Research Group

- 19 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Motivation
� Typical Hyperblocks and Superblocks

have many infrequently taken exit
branches.

� Infrequent exit branches

– impede code motion

– increase length of path to frequently
taken branches

– consume valuable branch resources

� Goal: Use predication to enhance per-
formance in the presence ofeasily pre-
dicted branches. 1%

92%

1%

2%

4%

David I. August
IMPACT Research Group

- 20 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Concept
� Partially Resolved Predicates (PRP)

– Instruction execution is guarded by predicates or branches.

– Some control dependences remain in predicated code.

� Fully Resolved Predicates (FRP)

– Instructions are guarded by predicates even if guarded by branches.

– All control dependences within a region are eliminated.

– Any instruction can be hoisted above a branch without speculation.

David I. August
IMPACT Research Group

- 21 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Computation

Cond2

A

B C

D
Hyperblock

Exit

Cond1

Partially Resolved Predicates

A

B
F

C

D

Cond1

Cond2

p1=Cond1 p2=Cond1

T

T

F

Fully Resolved Predicates

A

p3=Cond2 || Cond1

B C

D

Cond1

Cond2

p1=Cond1 p2=Cond1

T

T

F

F

David I. August
IMPACT Research Group

- 22 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Optimization Opportunities
� Branch reordering

– Branches can be placed in any order.

– Move more frequently taken branches above less frequently taken branches.

� Instruction percolation without speculation

– Percolated instructions can never have side effects because they are guarded
by predicates.

– Store instructions

� Speculating stores has traditionally been problematic for most specu-
lation schemes.

� Inability to speculate stores limits available ILP.

David I. August
IMPACT Research Group

- 23 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Case Study
� grepfunction “execute” inner loop

� Segment accounts for about 40% of total execution time.

� Source:

for (; ;)

f

if (p2 >= ebp)
/* Excluded from Hyperblock */

if ((c = *p2++) == ’nn’)
break;

if (c)
if (p1 < &linebuf[1024-1])

*p1++ = c;

g

David I. August
IMPACT Research Group

- 24 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Fully Resolved Predicates: Code Example

Original Code Segment:
Taken

CB 6: Frequency

1 r35 = MEM[r34] branch r34 >= r37, CB 95 14

2 r34 = r34 + 1

3 branch r35 == 10, CB 11 4035

4 branch r35 == 0, CB 11 0

5 branch r33 >= r57, CB 11 0

6 MEM[r33] = r35 r33 = r33 + 1 jump CB 6 101148

FRP Predicated Code Segment:
Taken

CB 6: Frequency
1 r35 = MEM[r34] p0ut, p1uf = (r34 >= r37)

2 r34 = r34 + 1 <p1> jump CB 95 <p0> 14
3 p2ut, p3uf = (r35 == 10) <p1>

4 p4ut, p5uf = (r35 == 0) <p3> jump CB 11 <p2> 4035

5 p6ut, p7uf = (r33 >= r57) <p5> jump CB 11 <p4> 0

6 MEM[r33] = r35 <p7> r33 = r33 + 1 <p7> jump CB 6 <p7> 101148

7 jump CB 11 <p6> 0

David I. August
IMPACT Research Group

- 25 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Path Height Reduction: Concept
� Path Classes

– dependence limited

– resource limited

� Optimizations can be per-
formed to exchange depen-
dence height for resource
usage

� Goal: balance resource
height and dependence
height toreduce effective
height of path

Sequential code:

Saturated code:

� Height goes from 6 to 2

� Operation count went from 10
to 14

� Extra operations absorbed by
processor width

David I. August
IMPACT Research Group

- 26 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

Path Height Reduction: Concept

Original:

T1 = A � B

T2 = T1 � C

E = T2 �D

Single back substitu-
tion:

T1 = A � B

E = T1 � C �D

Final:

E = A � B � C �D

Arithmetic Semantics—Tree of
Computation:

T1 = A �B T2 = C �D

E = T1 � T2

Parallel Semantics:

E�= A � B E�= C �D

“�” represents the universal
associative operator.

David I. August
IMPACT Research Group

- 27 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

FRP/PHR: Code Example

FRP Predicated Code Segment:
Taken

CB 6: Frequency
1 r35 = MEM[r34] p0ut, p1uf = (r34 >= r37)

2 r34 = r34 + 1 <p1> jump CB 95 <p0> 14
3 p2ut, p3uf = (r35 == 10) <p1>

4 p4ut, p5uf = (r35 == 0) <p3> jump CB 11 <p2> 4035

5 p6ut, p7uf = (r33 >= r57) <p5> jump CB 11 <p4> 0

6 MEM[r33] = r35 <p7> r33 = r33 + 1 <p7> jump CB 6 <p7> 101148

7 jump CB 11 <p6> 0

FRP Predicated Code Segment with Height Reduction:
Taken

CB 6: Frequency
1 r35 = MEM[r34] p0ut, p1uf = (r34 >= r37) p7af = (r34 >= r37)

2 r34 = r34 + 1 <p1> p7af = (r33 >= r57) jump CB 95 <p0> 14

3 p2ut, p3uf = (r35 == 10) <p1> p7af = (r35 == 10) p7af = (r35 == 0)

4 MEM[r33] = r35 <p7> r33 = r33 + 1 <p7> jump CB 6 <p7> 101148

5 p4ut, p5uf = (r35 == 0) <p3> jump CB 11 <p2> 4035

6 p6ut = (r33 >= r57) <p5> jump CB 11 <p4> 0

7 jump CB 11 <p6> 0

David I. August
IMPACT Research Group

- 28 -

Predication Framework Fully Resolved Predicates / Path Height Reduction

FRP/PHR: grepCode Example Performance

Cycle Original HB FRP Only FRP w/ Height Red.
1 14
2 14 14
3 4035
4 0 4035 101148
5 0 0 4035
6 101148 101148 0
7 0 0

Cycles 619007 623056 424795
Speedup 1.00 0.99 1.46

� FRP enabled a 46% speedup for a single iteration.

� Performance of this optimization is magnified by unrolling.

David I. August
IMPACT Research Group

- 29 -

Predication Framework Code Specialization

Code Specialization: Case Study
� compress function “compress” inner

loop

� Source:

probe:

f

if ((i -= disp) < 0)
i += hsize reg;

if (htabof(i) == fcode)
/* Excluded from Hyperblock */

if (htabof(i) > 0)
goto probe;

g

David I. August
IMPACT Research Group

- 30 -

Predication Framework Code Specialization

Code Specialization: Code Example

Original Code Segment
CB 38:

1 r9 = r9 - r12
2 (p1uf) = (r9 < 0)

3 r9 = r9 + r13 (p1)
4 r10 = r9 << 2
5 r114 = MEM[r10]
6
7 branch (r14 <> r8) CB 38

Specialized Code Segment
CB 38:

1 r9 = r9 - r12
2 (p1uf, p2ut) = (r9 < 0)

3 r110 = r9 << 2 (p2) r9 = r9 + r13 (p1)
4 r114 = MEM[r110] (p2) r10 = r9 << 2 (p1)
5 r14 = MEM[r10] (p1)
6 branch (r114 <> r8) CB 38 (p2)
7 branch (r14 <> r8) CB 38 (p1)

Specialized Code Segment After Optimization
r1312 = r13 - r12
CB 38:

1 r9 = r9 - r12 r1009 = r9 + r1312
2 r110 = r9 << 2 (p1uf, p2ut) = (r9 < 0) r10 = r1009 << 2
3 r14 = MEM[r110] (p2) r9 = r1009 (p1) r14 = MEM[r10] (p1)
4 r10 = r9 << 2 (p1)
5 branch (r14 <> r8) CB 38

David I. August
IMPACT Research Group

- 31 -

Predication Framework Control Flow Transformations

Advanced Control Flow Transformation

T

p12

p13

p14

T

p15

p19

p16 p17

p18

p19

T

p14 p19

p16

Original predicate definiton schedule

p15_of, p12_ut = (r4 > 32)

p15_of, p13_ut = (r4 < 127)

p19_ot, p18_uf = (r4 == 32)

p14_ut = (0 == r2)

p19_ot = (r4 == 9) <p18>

<p17>

<p13>

<p12>

<T>

p16_ut, p17_uf = (r4 == 10) <p15> <p15>p19_ot = (r4 == 10)

c1 = (r4 > 32)

c2 = (r4 < 127)

c3 = (r2 == 0)

c4 = (r4 == 10)

c5 = (r4 == 32)

c6 = (r4 == 9)

Predicate definition schedule after range analysis and and-type parallelization

...

<T>

<T>

<T>

<T>

p14_at = (r4 < 127)

p19_ot = (r4 == 32)

p14_at = (r4 > 32)

p19_ot, p16_ut = (r4 == 10)

...p14_at = (r2 == 0)

p19_ot = (r4 == 9)

<T>

<T>

Expressed in terms of conditions Minimized

c1

p12 & c2

p13 & c3

!c1 | p12 & !c2

p15 & !c4

p17 & !c5

p15 & c4

c1 & c2

c1

c1 & c2 & c3

!c1 | c1 & !c2

(!c1 | c1 & !c2) & c4

(!c1 | c1 & !c2) & !c4

((!c1 | c1 & !c2) & !c4) & !c5

(!c1 | c1 & !c2) & c4 |
((!c1 | c1 & !c2) & !c4) & c5 |
(((!c1 | c1 & !c2) & !c4) & !c5) & c6

c1 & c2 & c3

p15 & c4 | p17 & c5 | p18 & c6

c4

c4 | c5 | c6

Original predicate expressions

p18

p17

p16

p15

p14

p13

p12

David I. August
IMPACT Research Group

- 32 -

Predication Framework Control Flow Transformations

Advanced Control Flow Transformation
� The predicated representation enables extraction and manipulation of pro-

gram control logic.

� Optimization of predicate defines can be formulated as a specialized logic
synthesis problem.

– Predicate definitions are analogous to gates. They consume resources.
– Predicate computation height is analogous to total gate delay.
– Inputs may be available at different times.
– Resource availability changes with the schedule.

� Algorithm overview:

– Analyze conditions for interrelation.
– Extract program control logic from extant predicate defines.
– Minimize logical expressions using Boolean optimization techniques.
– Factor control expressions based on condition availability and schedule

freedom.
– Re-express control as a new, optimized predicate define network.

David I. August
IMPACT Research Group

- 33 -

Predication Framework Ultrablock

Compilation Block Scope - The Loop Boundary Problem
� Acyclic nature of hyperblocks precludes pre-loop and post-loop block sub-

sumption.

Traditional)
(heuristic)

(Predicate,
ILP, and

Code

Formation
Hyperblock SchedulingOptimizations

Original Code Hyperblock ScheduledOptimized
Hyperblock

David I. August
IMPACT Research Group

- 34 -

Predication Framework Ultrablock

The Ultrablock Compilation Framework
� Best use of predicated representation: Early aggressive formation which

can support generalized regions

� Best use of predicated execution: Partial Reverse If-Conversion for sched-
uler adjustment of predication and reinstantiation of control flow

Traditional)
ILP, and

(Predicate,

If-Conversion
Partial Reverse

and
(aggressive)
Formation

SchedulingOptimizations

Ultrablock

Ultrablock

Original Code ScheduledOptimized
Code

Ultrablock

David I. August
IMPACT Research Group

- 35 -

Predication Framework Ultrablock

Intermediate Representation
� IR needs to be extended to representultrablockswhich can represent inter-

nal cycles to support compilation of general regions.

� Special purpose control flow and loop transformations can be replaced by
data flow optimizations.

� A few techniques possible with current data flow optimizations are: loop
versioning, loop fusion, if-then-else fusion, if-then-else interchange.

David I. August
IMPACT Research Group

- 36 -

Predication Framework Ultrablock

Ultrablock Example: Loop Versioning

Few compilers do loop versioning,
probably because it is a complicated
and/or expensive control flow trans-
formation.

� 3,608,541 dynamic loop itera-
tions in 085.cc1

� 1,309,548 (36%) of these itera-
tions haveloop invariant, pro-
gram variantbranches and pred-
icates.

� 374,279 (10%) of these itera-
tions haveloop invariant, pro-
gram variantpredicates.

D

A

B<p1>

<p2>C

p1, p2 = X > Y

branch p1

A

B

A

D

C

D

p1 = X > Y

C

A

B

D

A

D

C

B

p1, p2 = X > Y

<p1>

<p2>

David I. August
IMPACT Research Group

- 37 -

Predication Framework Predicate Analysis

Predicate Analysis
� Predicate Analysis analyzes predicate definitions to understand how predi-

cates relate to one another.

� This information is essential for the compilation process.

– Optimization

– Register Allocation

– Scheduling

� Predicate analysis applied to optimization—constant propagation example:

p1ut = cond1

p2ut = cond2 < p1 >

p2ut; p1ot = cond1

p1ot = cond2

p1ut; p2at = cond1

p2at = cond2

If p1 is a superset ofp2:

r1 = 10 < p1 >

r2 = r1 + 2 < p2 >

=) r2 = 12 < p2 >

David I. August
IMPACT Research Group

- 38 -

Predication Framework Predicate Analysis

Predicate Analysis—Related Work
� Predicate Analysis has traditionally been done hierarchically.

� Predicate Hierarchy Graph (PHG), the original system in IMPACT, is purely
hierarchical.

� Unfortunately, predicates are not always related in a hierarchical fashion
and these systems cannot accurately represent all relationships.

p2ut; p1ot = cond1

p1ot = cond2

p3ut = cond3 < p2 >

p1 is not an ancestor ofp3, butp1 is a superset ofp3.

� Predicate Query System (PQS) - used in theElcor compiler at HP Labs
makes approximations in other ways.

David I. August
IMPACT Research Group

- 39 -

Predication Framework Predicate Analysis

The Predicate Analysis System (PAS)
� Predicate definitions are essentially Boolean expressions — leverage CAD

work in Boolean representations to represent all predicate relations.

� The PAS is built upon Binary Decision Diagrams (BDDs) — specifically,
PAS was built uponCudd. [Somenzi]

� In addition to being unable to represent all relations, the PHG and PQS are:

– limited locally to a single hyperblock.

– not able to understand branch guards.

p1 = cond0 & cond1 | !cond0 & cond2

<p1>Oper

p1 = cond1 p1 = cond2

Branch cond0

� PAS can represent instruction guarding by branches and predicates.

� Each instruction in the program has a complete expression of its execution,
with the exception of loops.

David I. August
IMPACT Research Group

- 40 -

Predication Framework Dataflow Analysis

Dataflow Analysis
� Dataflow can be performed without regard to

predicates; results are conservative.

� Conservative results make optimizations,
scheduling, and register allocation less effective.

� Conservative dataflow

– Only instructions on TRUE can KILL.

– r3 is not killed by instruction 3 because it is
predicated.

– The live range of r3 =f1, 2, 3, 4g.

� Predicate-aware dataflow

– Instructions on a predicate KILL on that pred-
icate.

– The live range of r3 =f3, 4g.

2
3
4
5
6
7

r4 = r7 - 1

1

r9 = r9 / 2 <p2>

r7 = r4 + r6
r8 = r3 + 1
r3 = r4 + r5

= (r2 < 0)unp2
p1un = (r1 < 0)

<p1>
<p1>
<p2>

<p1>

David I. August
IMPACT Research Group

- 41 -

Predication Framework Dataflow Analysis

Dataflow Analysis—Predicate Flow Graph
� Developed the Predicate Flow Graph (PFG) which can perform predicate-

sensitive dataflow analysis.

� Idea was to change the underlying graph so that traditional dataflow analysis
techniques would generate correct results.

� Results have shown that accurate dataflow analysis has been achieved.

p2

p1un = (r1 < 0)

un = (r2 < 0)p2

r3 = r4 + r5
<p1>
<p1>

un

un <p1>
<p1>

= 0
= (r1 < 0)

r8 = r3 + 1
r7 = r4 + r6
r4 = r7 - 1
r9 = r9 / 2

<p2>

<p1>
<p2>

r4 = r7 - 1

<p2>

<p1>
<p2>

r7 = r4 + r6

<p2>

<p1>
<p2>

r7 = r4 + r6

p1’p1

p2’p2r8 = r3 + 1
r7 = r4 + r6
r4 = r7 - 1
r9 = r9 / 2

<p2>

<p1>
<p2>

un = (r2 < 0)p2

r3 = r4 + r5
<p1>
<p1>

p1

3
2

5
4

6
7

1
2
3
4
5
6
7

1

David I. August
IMPACT Research Group

- 42 -

Predication Framework Dataflow Analysis

Dataflow Analysis Path Explosion Problem
� Predication eliminates the need for many paths to

exist in control flow.

� Using the PFG based approach these paths be-
come materialized.

� As a general rule, the path width of the PFG is
greater than2n, where n is the number of inde-
pendent predicates with overlapping live ranges.

� Assuming p1, p2, and p3 are independent we
have23 = 8 paths.

un

3
4
5
6

2
1 = (r1 < 0)

<p1>

= (r2 < 0)
= (r3 < 0)

un

p1
p2
p3un

r5 = X
r6 = Y
Z = r5 <p3>

<p2>

David I. August
IMPACT Research Group

- 43 -

Predication Framework Dataflow Analysis

Dataflow Analysis: Disjunctive Compositions
� The key to eliminating the exponential

nature of dataflow analysis is a parti-
tion graph of disjunctive expressions.

� By operating on a partition graph, in-
teractions between independent pred-
icates can be expressed without enu-
merating all paths.

� Predicates are composed of nodes,
any two of which exist in exactly one
of three relationships:implication, in-
dependence, or exclusivity.

� Using only such nodes guarantees
that complex relationships between
predicates can be represented exactly,
yielding accurate dataflow results.

x

p1 p1 p2 p2

T

p3p4 p4 y

SSA pred. def. Resulting disjunctive expressions

pi;j =utC hpgi pi;j = pgC

pi;j =uf C hpgi pi;j = pgC
0

pi;j = [pi;j�1] otC hpgi pi;j = p0gpi;j�1 _ pgpi;j�1C
0 _ pgC

pi;j = [pi;j�1] of C hpgi pi;j = p0gpi;j�1 _ pgpi;j�1C
0 _ pgC

pi;j = [pi;j�1] ctC hpgi pi;j = p0gpi;j�1 _ pgC

pi;j = [pi;j�1] cf C hpgi pi;j = p0gpi;j�1 _ pgC
0

pi;j = [pi;j�1] atC hpgi pi;j = p0gpi;j�1 _ pgpi;j�1C

pi;j = [pi;j�1] afC hpgi pi;j = p0gpi;j�1 _ pgpi;j�1C
0

David I. August
IMPACT Research Group

- 44 -

Predication Framework The End

A Global Predication Compilation Framework

David I. August

Wen-mei W. Hwu
IMPACT Compiler Group

University of Illinois - Urbana/Champaign

David I. August
IMPACT Research Group

- 45 -

