
1

The BioWall: an Electronic Tissue for Prototyping
Bio-Inspired Systems

Gianluca Tempesti*, Daniel Mange, André Stauffer, Christof Teuscher

* Logic Systems Laboratory
Swiss Federal Institute of Technology, Lausanne

LSL-I&C-EPFL, INN-Ecublens
CH-1015 Lausanne, Switzerland

Phone: +41-21-6932676
Fax: +41-21-6933705

Email: Gianluca.Tempesti@epfl.ch

Abstract

In this article, we present the BioWall, a giant reconfigurable computing tissue developed
to implement machines according to the principles of our Embryonics (embryonic
electronics) project. The BioWall’s size and features are designed for public exhibition,
but at the same time it represents an invaluable research tool, particularly since its
complete programmability and cellular structure are extremely well adapted to the
implementation of many different kinds of bio-inspired systems. To illustrate these
capabilities, we present a set of applications that range over many diverse sources of
biological inspiration, from the ontogenetic systems, through epigenetic artificial neural
networks, to phylogenetic evolving hardware. All these applications have been fully
implemented and tested in hardware on the BioWall.

1 Introduction

In our laboratory, we have been working on bio-inspired hardware for several years. In our research
activities, we have covered most of the possible avenues for such inspiration [15], ranging from
phylogenetic systems, inspired by the evolution of biological species, through ontogenetic systems, inspired
by the development and growth of multicellular organisms, to epigenetic systems, inspired by the
adaptation of individuals to the environment.

Among all these research axes, the main effort in our lab has been concentrated on the ontogenetic
axis, through the Embryonics (embryonic electronics) project [9][10], which aims at drawing inspiration
from the development of multicellular individuals in order to obtain in digital hardware some of the
features of biological organisms, and notably growth and fault tolerance.

Our activities have attracted a flattering amount of interest in the most varied and sometimes
unexpected milieus. Among the most unexpected was undoubtedly Mrs. Jacqueline Reuge, who decided to
fund the construction of a machine to display the principles of Embryonics to the public within a museum
(the Villa Reuge [23]) built to honor the memory of her late husband. Her generous support has allowed us
to maintain our tradition of always verifying in hardware the concepts developed for our project.

This serendipitous event allowed us to construct a machine that would otherwise have remained a
dream. We named this machine BioWall [22], because of its biological inspiration on one side, and because
of its size on the other. In fact, the main goal of the machine being as a platform to demonstrate the features
of our Embryonics systems to the public through a visual and tactile interaction, the final implementation of
the BioWall (Figure 1) weighs in at an impressive 5.3mx0.6mx0.5m=3.68m3 (130 cubic feet).

2

Figure 1: Frontal view of the BioWall.

On this machine, which will be described in some technical detail in section 2, we implemented, for
the first time in actual hardware, an organism endowed with all of the features of an Embryonics machine,
as it has often been defined in the literature. The functionality of this organism (detailed in subsection 3.1),
the BioWatch, is to count hours, minutes, and seconds, and is used to demonstrate the growth and self-
repair capabilities of our systems.

In a sense, the implementation of the BioWatch would by itself be sufficient to justify the effort that
has gone into the construction of our BioWall (the realization of Embryonics systems was, after all, the
goal of the machine). However, in developing our machine, we quickly realized that the capabilities of such
a platform were not limited to a single application. In fact, as the technical description of the machine in
section 2 should reveal, it is an ideal platform to prototype many different kinds of two-dimensional
cellular systems, i.e. systems composed of an array of small, locally-connected elements.

The applications that correspond to this description are numerous, and particularly in the domain of
bio-inspired systems. For example, cellular automata (CA) are a very common environment in bio-inspired
research [3], from the classic Game of Life of John Conway [2] (subsection 3.2), through self-replicating
loops as first developed by Chris Langton (subsection 3.3), to Von Neumann’s universal constructor [20]
(subsection 3.4), to name but a few (in growing order of complexity). And while the BioWall is ideally
suited to the implementation of CAs, it is by no means limited to it. As examples of other possible bio-
inspired systems, we will describe an implementation of a particular type of artificial neural networks,
developed by Alan Turing [19] (subsection 3.5), and a two-dimensional realization of Firefly [13], a
machine we designed and built to demonstrate the feasibility of online hardware evolution (subsection 3.6).

But we have only begun to explore the possibilities of the BioWall as a research tool. In the
conclusions of this article (section 4) we will define some of the future areas of research in which the
machine will be used as a prototyping platform for bio-inspired systems.

2 The BioWall

The main idea behind the construction of the BioWall is the realization of Embryonic machines. The
structure of such machines, described in detail elsewhere [9][10], is hierarchical: organisms (application-
specific systems) are realized by the parallel operation of a number of cells (small processors), and each
cell is implemented as an array of molecules (programmable logic elements). To implement this kind of
machines, the BioWall is structured as a two-dimensional tissue composed of units (each unit corresponds
then to a molecule), where each unit (Figure 2a) consists of an input element (a touch-sensitive membrane),
an output element (an array of 8x8=64 two-color LEDs), and a programmable computing element (a
Spartan XCS10XL Xilinx FPGA [21]). The BioWall contains 3200 units, arranged as 20 rows of 160 units.

The tissue represents then an impressive amount of computational power (3200 FPGAs, some of which
are shown in Figure 2b), coupled with an I/O interface (the membranes and the LED arrays) that allows a
large-scale visual and tactile interaction. The advantages of this solution are obvious: on one hand the size
of the display allows an immediate interaction with applications that are normally limited to software
simulation on a computer screen (some of these applications are described in the next section, others are
mentioned in the conclusion), and on the other hand the computing power and programmability of the
FPGAs allow the prototyping of new bio-inspired systems.

3

Figure 2: (a) Schematic representation of a BioWall unit. (b) Partial view of the Xilinx FPGAs.

For the moment (more on the subject in the conclusion), the Xilinx FPGA can only be programmed
with the same configuration, which limits the functionality of the units to the 10,000 equivalent logic gates
of the Spartans, while the considerable delays inherent in propagating a global signal over distances
measured in meters limit the clock speed to a few hundred MHz (a speed that is nevertheless more than
adequate if coupled with the massive parallelism of the machine and considerably too fast for human
interaction in many applications).

Besides the I/O capabilities of the membranes and of the LED displays mentioned above, a set of
modules placed on the borders of the machine allow the tissue to be interfaced with standard logic, either
via a PC or directly with user-defined modules (the modules, of course, allow access only to the borders of
the array, but, if necessary, signal propagation logic can be programmed in the FPGAs).

The software tools developed for the BioWall are rudimentary but complete. A simple interface on a
PC allows the user to define a set of files that will be used to configure the tissue. Four kinds of files are
currently defined (more can be added): the configuration file for the Xilinx FPGAs, and three different
formats used to send user-defined data on the input pins at the borders of the tissue (used, for example, to
provide an initial configuration for a cellular automaton). The values on the output pins at the borders of the
tissue can be read by the PC and either stored on disk or used as required.

3 Applications

As we mentioned in the introduction, the BioWall was designed with a specific application in mind:
the realization of ontogenetic machines as defined by the specifications of the Embryonics project.
However, the capabilities of the BioWall are not limited to this application. Its cellular structure is well
suited to the implementation of all sorts of bio-inspired applications. In this section, we will present a few
such applications, to show how the BioWall can implement hardware inspired by all the three axes of the
POE model of biological inspiration [15]: phylogenesis (P), ontogenesis (O), and epigenesis (E).

3.1 BioWatch

The principles of the Embryonics project, as well as the theory behind the BioWatch, have been
described in detail in a number of publications [9][10][16]. To illustrate the implementation of the
BioWatch application on the BioWall, we’ll introduce a slightly simplified example: whereas the complete
BioWatch is an organism capable of counting hours, minutes, and seconds, the Counter application (Figure
3a) only counts seconds. The principles of operation of the two machines are identical.

The Counter counts seconds, from 00 to 59. From left to right, the display shows tens of seconds (from
0 to 5), units of seconds (0 to 9) and a spare zone, which remains inactive during normal operation. The
counter can be described as being divided into four cells: two active (indicating tens and units respectively)
and two spare. Each unit of the BioWall is a molecule of the Embryonics hierarchy. A cell is then a mosaic
of 20x25=500 molecules (Figure 3b), and contains two repair columns (2x25=50 molecules).

4

Figure 3: (a) The Counter organism. (b) Embryonics’ hierarchy on the BioWall.

The visitor has control over the “life” of each molecule. A fault can be inserted in any molecule simply
by pressing on the corresponding unit’s membrane. The fault detection mechanism included in the
Embryonics molecular layer automatically detects the error and activates the molecular self-repair
mechanism. A dead molecule is instantly replaced by the neighbor immediately to its right, and so on, until
the nearest yellow repair column (Figure 4a). The limits of this kind of self-repair imply that only a single
molecule per line, between two repair columns, can be killed. If this constraint is respected, the cell
survives any amount of faults, although the figure displayed is distorted. Each cell can thus tolerate up to
two faults per line (one fault between each pair of yellow columns), i.e. 2x25=50 faults in total.

If the above rule is not respected, and several faults are inserted on the same line of the same cell
between two repair columns, the molecules can no longer repair themselves and the cell dies. However, the
death of a cell does not imply the death of the organism: it is instantly replaced by a spare cell to its right
(Figure 4b), while the dead cell is switched off and becomes a scar. It should be noted that, thorough this
self-repair process, the Counter continues to work without fault: the tissue remembers its state and recovers
the correct time after repair. Moreover, we are currently implement an “unkill” mechanism that, should a
sufficient number of faults be removed (by pressing the membrane of a dead molecule), will automatically
re-activate a dead cell, which will recover its functionality (and its state) within the organism).

Figure 4: (a) Molecular self-repair. (b) Cellular self-repair (cicatrisation).

The self-repair capabilities of the Embryonics machines are based on a general principle of life - cell
differentiation [16]. Each organism is a collection of cells, each containing a full copy of the genetic
program, the genome. This structure makes the whole organism extremely robust, since each cell contains
the complete plan and can therefore replace any other defective cell. Nevertheless, like all artificial and
natural organisms, the death of a sufficiently large number of cells cannot be repaired, causing the death of
the organism. Of course, the advantage of the “controlled” environment in which the machine operates is
that the death of the organism causes a general reset of the system, the obliteration of all injected faults, and
the “birth” of a new, perfectly functioning machine.

The complete implementation of the BioWatch on the BioWall (Figure 5) uses 8 cells of 20x20
molecules each, with two spare columns of molecules in each cell. Six of the 8 cells are active during
normal operation, while two are spares, ready to replace a dead cell. All the features of the Embryonics
project have been tested and verified in hardware through this implementation.

5

Figure 5: The complete BioWatch on the BioWall.

3.2 Game of Life

Life is complexity. The way a spider weaves its web or an ant colony builds its nest suggests that these
creatures are intelligent. They are nothing of the sort. Biologists have demonstrated that, by blindly
following basic rules that have been gradually developed through natural selection, every animal behaves in
ways which are sometimes extremely complex.

John Conway’s game of Life [2] is a striking example of this kind of emergent behavior. The game is
realized with a very simple two-dimensional CA, in which each element represents an individual. Each
individual has only two possible states: alive or dead. The next state of each individual depends on the
current state of the cell itself and that of its eight nearest neighbors, according to the following rules:

∑ if the number of living neighbors is too small (zero or one), the individual dies of isolation and its
future state is “dead”;

∑ if an individual has exactly two living neighbors, it conserves its current state;
∑ if an individual has exactly three living neighbors, its future state is “alive”;
∑ if an individual has too many living neighbors (four or more), it dies of overpopulation and its future

state is “dead”.
From these simple, local rules some astoundingly complex global behaviors have been observed and

developed (Figure 6). A strikingly visual application, the game of Life is ideally suited for an
implementation on the surface of the BioWall, where the touch-sensitive membranes are used to override
the rules of the game and to give life to the individuals. We developed two different implementations:

∑ In Life1, each of the 3200 units of the BioWall represents a single individual of the game of Life.
The surface is toroidal and the touch-sensitive membranes toggle the state of the individuals.

∑ In Life16, each unit represents an array of 4x4=16 individuals (a total of 51,200 individuals on the
BioWall), and the touch-sensitive membranes insert a glider (one of the stable configurations of the
game of Life, which moves diagonally across the space).

This application, while not of direct interest for research (it is mostly aimed at providing direct
interaction for the general public), is nevertheless a good example of a bio-inspired application ideally
suited to illustrate the features (display capabilities, interactivity, etc.) of the BioWall.

Figure 6: A global configuration on the Life16 application, the Dragon.

6

3.3 Self-Replicating Loops

The study of self-replicating machines, initiated by von Neumann over fifty years ago [20], has
produced a plethora of results over the years [14]. Much of this work is motivated by the desire to
understand the fundamental information-processing principles and algorithms involved in self-replication,
independently of their physical realization [12]. The construction of artificial self-replicating machines can
have diverse applications, ranging from nanotechnology [4], through space exploration [5], to
reconfigurable computing tissues.

A major milestone in the history of artificial self-replication is Langton’s design of the first self-
replicating loop [7]. His 86-cell loop is embedded in a two-dimensional, 8-state, 5-neighbor cellular space;
one of the eight states is used for so-called core cells and another state is used to implement a sheath
surrounding the replicating structure. Reggia et al. [12] proposed simplified versions of Langton’s loop, the
smallest being sheath-less and comprising five cells.

All self-replicating loops presented to date are essentially worlds unto themselves: once the initial loop
configuration is embedded within the cellular automaton (CA) universe (at time-step 0), no further user
interaction occurs, and the CA chugs along in total oblivion of the observing user. To render more
interactive and more visible the self-replication process, we implemented self-replicating loops, initially of
size 2x2 [17], and then of variable size (e.g., Figure 7), on the BioWall. In this implementation, every unit
of the BioWall is one cell of the CA, and pressing on the membrane of a unit belonging to a loop causes the
latter to replicate in one of the four cardinal directions (Figure 8).

Figure 7: The idle cycle of a 3x3 loop.

Figure 8: Self-replicating loops of different sizes.

3.4 Von Neumann’s Constructor

The field of bio-inspired digital hardware was pioneered by John von Neumann. A gifted
mathematician and one of the leading figures in the development of the field of computer engineering, von
Neumann dedicated the final years of his life on what he called the theory of automata [20]. This research,
which was unfortunately interrupted by his untimely death in 1957, was inspired by the parallel between
artificial automata, of which the paramount example are computers, and natural automata such as the
nervous system, evolving organisms, etc.

To find a physical realization for his theory of automata, von Neumann developed a model, known as
von Neumann’s Universal Constructor, a cellular automaton that became the basis for the greater part of
the research on self-replicating machines for decades following its conception.

In von Neumann’s work, self-replication is always presented as a special case of universal construction
(Figure 9a): his machine Uconst is capable of building any other machine M, provided it can access its
description D(M). This approach was maintained in the design of his cellular automaton, which is therefore
much more than a self-replicating machine. The complexity of its purpose is reflected in the complexity of
its structure, based on three separate components:

7

∑ A memory tape, containing the description (a one-dimensional string of elements) of the machine to
be built. In the special case of self-replication, the memory contains a description of the universal
constructor itself (Figure 9b).

∑ The constructor itself, a machine capable of reading the memory tape and interpreting its contents.
∑ A constructing arm, directed by the constructor, used to build the offspring (the machine described

in the memory tape). The arm moves in space and sets the state of the elements of the offspring to
the appropriate state.

Figure 9: Von Neumann’s universal constructor. (a) Basic operation. (b) Self-replication.

Beyond this already considerable complexity, von Neumann postulated the presence of a universal
computer Ucomp (in practice, a universal Turing machine [6], an automaton capable of performing any
finite computation) that is attached to, and replicated with, the universal constructor.

The implementation as a cellular automaton is correspondingly complex. Each cell has 29 possible
states, and thus, since the next state of a cell depends on its current state and that of its four cardinal
neighbors, 295=20,511,149 transition rules are required to exhaustively define its behavior. If we consider
that the size of von Neumann’s constructor is of the order of 100,000 elements, we can easily understand
why the automaton has not even been fully simulated as of today.

In fact, as part of the Embryonics project, we did realize a hardware implementation of a set of
elements of von Neumann’s automaton [1]. By carefully designing the hardware structure of each element,
we were able to considerably reduce the amount of memory required to host the transition rules. Using this
same technique, we were able to encode one cell of von Neumann’s automaton in each element of the
BioWall, providing us with a surface of 3200 elements that, while not sufficient by far to fully implement
the universal constructor, represents a sufficiently large surface to implement many of the significant
portions (organs, in von Neumann’s terminology) of the machine (Figure 10).

Figure 10: An organ of von Neumann’s universal constructor. (a) Construction. (b) Final configuration.

8

3.5 Turing Neural Networks

It was in 1948 that Alan Turing wrote a little-known report entitled “Intelligent Machinery” [19]. At
that time, he was employed at the National Physical Laboratory (NPL) in London where he worked on the
design of an electronic computer - the Automatic Computing Engine (ACE). Turing never had great interest
in publicizing his ideas, so the paper went unpublished until 1968, 14 years after his death.

Few people know that the “Intelligent Machinery” paper contains a fascinating investigation of
different connectionist models that would today be called neural networks. It is amazing that his employer
at the National Physical Laboratory, Sir Charles Darwin, grandson of the well-known English naturalist,
dismissed the manuscript as a “schoolboy essay”. In describing randomly connected networks of artificial
neurons, Turing has written one of the first manifests of the field of artificial intelligence (although he did
not use this term). Turing’s neural networks have recently been investigated in detail in a book [18].

Turing himself called his networks unorganized machines. He basically proposed three types of
machines: A-type, B-type, and P-type unorganized machines. A-type and B-type machines are Boolean
networks made up of extremely simple, randomly interconnected NAND gates (i.e., neurons), each having
exactly two inputs (i.e., synapses) from other neurons. The neurons are synchronized with a global clock
signal. Unlike A-type networks, Turing’s B-type networks have modifiable interconnections (basically a
switch) and thus an external agent can “organize” these machines (by enabling and disabling connections)
to perform a required job. The idea behind the introduction of B-type networks was to open the possibility
of reinforcing successful and useful links and of cutting useless ones. His deeper motivation was to build
structures that can learn. On the other hand, the idea of organizing an initially random network of neurons
and connections is undoubtedly one of the most significant aspects of Turing’s paper.

Recently, Turing’s neural networks have been implemented on the BioWall’s reconfigurable tissue.
Each of the 3200 units of the machine can be interactively configured by choosing one out of five possible
functions: (1) empty cell, (2) neuron, (3) connection, (4) synapse, or (5) input cell. Figure 11 shows a
possible configuration. The user (the external supervisor) is invited to discover and affect the behavior of
the unorganized B-type machine by opening and closing synapses (i.e., “organizing” the machine) and by
modifying the network’s inputs. All modifications occur by simply pressing on the respective touch-
sensitive membranes. This application is first and foremost a demonstration of Turing’s neural networks on
reconfigurable hardware (to the best of our knowledge, the first one). However, it also exemplifies the
fusion of the ontogenetic and epigenetic axes in a single artificial tissue.

Figure 11: A B-type Turing neural network on the BioWall.

3.6 2D Firefly

In 1997, the Logic Systems Laboratory presented an evolving hardware system called Firefly [13],
based on a cellular programming approach, in which parallel cellular machines evolve to solve
computational tasks. The computational task studied and successfully solved is known as synchronization:
given any initial configuration, the non-uniform CA must reach, within M time steps, a final configuration
in which all cells oscillate synchronously between all 0s and all 1s on successive time steps. The novelty of
Firefly is that it operates with no reference to an external device (such as a computer that carries out genetic
operators) thereby exhibiting online autonomous evolution.

Whereas the original Firefly machine was able to find a solution for a one-dimensional CA, we were
able to evolve, on the BioWall’s 3200 FPGAs, a CA that solves the synchronization task in two-dimensions
(Figure 12). The theoretical bases of the extension from 1D to 2D are presented in [13].

9

Figure 12: 2D synchronization task: a co-evolved, non-uniform, 2-state, 5-neighbor CA.

The implementation on the BioWall consists of a two-state, non-uniform CA, in which each cell (i.e.,
each FPGA of the BioWall) may contain a different rule. The cells’ rule tables are encoded as a bit-string,
known as the genome, that has a length of 25=32 bits for our 2D CA (the binary CA has a neighborhood of
5). Rather than employ a population of evolving CAs, our algorithm evolves a single, non-uniform CA of
the size of the entire BioWall (one cell of the CA in each unit of the BioWall, that is, 3200 cells), whose
rules are initialized at random. Initial configurations are then randomly generated and for each
configuration the CA is run for M time steps. Each cell’s fitness is accumulated over C initial
configurations: a single run’s score is 1 if the cell is in the correct state after M+4 iterations, and 0
otherwise. The (local) fitness score for the synchronization task is assigned to each cell by considering the
last four time steps (M+1 to M+4): if the sequence of states over these steps is precisely 0-1-0-1, the cell’s
fitness score is 1, otherwise this score is 0. After every C configurations the rules are evolved through
crossover and mutation. This evolutionary process is performed in a completely local manner, that is,
genetic operators are applied only between directly connected cells.

Unlike standard genetic algorithms, where a population of independent problem solutions globally
evolves, our approach involves a grid of rules that co-evolves locally. The CA implemented on the BioWall
performs computations in a completely local manner, each cell having access only to its immediate
neighbors’ states. In addition, the evolutionary process is also completely local, since the application of
genetic operators as well as the fitness assignment takes occurs locally.

Using the above-described cellular programming approach on the BioWall, we have shown that a non-
uniform CA of radius 1 can be evolved to successfully solve the synchronization task. In addition, after
having found a set of successful rules, our machine allows the state of each CA cell to be changed by
pressing on its membrane. The user can then observe how the machine synchronizes the 3200 cells.

4 Conclusions

The applications we presented are just a small sample of the capabilities of the BioWall, capabilities
that we are still discovering. The cellular structure of the machine make it an ideal platform for the
prototyping of bio-inspired systems, which often exploit this kind of structure, very common in nature at all
levels. Its size and structure impose a certain number of limitations (e.g., clock speed), but its complete
programmability provides an outstanding versatility (the different applications we mentioned should be a
sufficient, if incomplete, example) and the visual and interactive component of the system are invaluable
tools both for the dissemination of ideas and for the verification of research concepts that are often limited
to software simulations.

10

Among some the other bio-inspired applications that we have implemented or plan to implement on
our machine we will mention, for example, L-systems [8], ant simulations, predator-prey environments,
other kinds of CAs, and more “conventional” artificial neural networks. But one application (or rather,
group of applications) merits a separate mention.

As we repeatedly mentioned, biological inspiration in the design of computing machines finds its
source in essentially three biological models [15]: phylogenesis (P), the history of the evolution of the
species, ontogenesis (O), the development of an individual as directed by his genetic code, and epigenesis
(E), the development of an individual through learning processes (nervous system, immune system)
influenced both by their genetic code (the innate) and by the environment (the acquired). These three
models share a common basis: a one-dimensional description of the organism, the genome. While each of
these models, taken separately, has to a greater or lesser extent been used as a source of inspiration for the
development of computing machines, their amalgamation into a single artifact is a challenge yet to be met.

In September 2001, our laboratory, in collaboration with the University of York, England, the
Technical University of Catalunya (UPC), Spain, the University of Glasgow, Scotland, and the University
of Lausanne, Switzerland, has launched, under the aegis of the Information Society Technologies (IST)
program of the European Community, a three-year research project called Reconfigurable POEtic Tissue
[24], which aims at the development of a computational substrate optimized for the implementation of
digital systems inspired by all of the three above-mentioned models.

The POEtic tissue will be a cellular surface composed of a variable number of elements, or cells. Each
cell will have the ability to communicate with the environment (through sensors and actuators) and with
neighboring cells (through bi-directional channels), and accordingly executing a function. Each cell of the
tissue will have the same basic structure, but will be able to acquire different functionalities, like totipotent
or stem cells in living organisms [11]. This flexibility will be given by an organization in three layers: a
genotype plane, a configuration plane, and a phenotype plane. The genotype plane of each cell will contain
a full description of the organism in the form of a digital genome. The configuration plane will transform
the genome into a configuration string directly controlling the processing unit of the phenotype plane.
Through this cellular process, the tissue will be organized into a massively parallel multi-cellular electronic
structure. Within such structure, groups of cells will be able to co-operate to realize a given task, giving rise
to substructures not unlike organs in living beings.

While the POEtic project will eventually go beyond even the capabilities of the BioWall, it will be
necessary, in the early stages of the project, to be able to quickly prototype the tissues developed for the
project, in order to analyze not only their strengths and weaknesses, but also their feasibility in hardware (a
consideration often ignored in software simulations). With its versatility, the BioWall will be an
indispensable tool for the success of the POEtic project.

The BioWall, in the configuration described in this article, is currently on display at the Villa Reuge
museum [23], and will remain accessible to the public for the foreseeable future. Thanks to the generosity
of Mrs. Reuge, however, we were able to keep a smaller (but still sizeable, at 2000 elements) version of the
machine in our lab, to serve as a research tool [22]. As a consequence, we are able not only to develop new
applications, but also to keep ameliorating the features of the tissue (something that would not be possible
with the museum’s version, which cannot have downtimes). Notably, planned upgrades to the system
include an improved I/O interface and a more important upgrade that will allow each Xilinx FPGA to be
programmed independently of the others, increasing even further the versatility of the tissue (with all the
advantages and drawbacks inherent in having to handle a huge surface of programmable logic).

To conclude, we would like to invite all of you to come and “play” with the machine either at the Villa
Reuge museum or in our laboratory. And, on a more “serious” note, we would be extremely interested in
putting our machine at the disposal of other research groups, who could be interested in a hardware
realization of their ideas and concepts.

Acknowledgments

This work was supported in part by the Swiss National Science Foundation under grant 20-63711.00,
by the Leenaards Foundation, Lausanne, Switzerland, and by the Villa Reuge, Ste-Croix, Switzerland.

We thank Moad Brahami and Martin Duvanel for von Neumann’s constructor, Julien Pilet and Maciej
Kupiec Gavillet for the implementation of Turing’s neural networks, and Hans Jaeckle for 2D Firefly.

We also thank André Badertscher for some of the photos used in the article.

11

Finally, we wish to thank the European Community in general and the IST program in particular for
providing the means to pursue the development of bio-inspired hardware in the next years.

References

[1] J.-L. Beuchat, J.-O. Haenni. “Von Neumann’s 29-State Cellular Automaton: A Hardware
Implementation”. IEEE Trans. on Education, Vol. 43, No 3, pp. 300-308, August 2000.

[2] E.R. Berlekamp, J.H. Conway, R.K. Guy. Winning Ways for your Mathematical Plays. Vol.2: Games
in Particular. Academic Press, London, 1985.

[3] A. Burks (ed.) Essays on Cellular Automata. University of Illinois Press, Urbana IL, 1970.
[4] K.E. Drexler. Nanosystems: Molecular Machinery, Manufacturing and Computation. John Wiley, New

York, 1992.
[5] R.A. Freitas and W.P. Gilbreath (eds.). Advanced automation for space missions: Proceedings of the

1980 NASA/ASEE summer study. NASA, Scientific and Technical Information Branch (available from
U.S.G.P.O., Publication 2255), Washington D.C., 1980.

[6] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory Languages and Computation. Addison-
Wesley, Redwood City, CA, 1979.

[7] C. Langton. “Self-reproduction in cellular automata”. Physica D, 10:135-144, 1984.
[8] A. Lindenmayer. “Mathematical models for cellular interaction in development, parts I and II.”

Journal of Theoretical Biology, 18:280-315, 1968.
[9] D. Mange, M. Sipper, A. Stauffer, G. Tempesti. “Towards Robust Integrated Circuits: The Embryonics

Approach”. Proceedings of the IEEE, vol. 88, no. 4, pp. 516-541, April 2000.
[10] D. Mange and M. Tomassini (eds.) Bio-Inspired Computing Machines, Presses Polytechniques et

Universitaires Romandes, Lausanne, Switzerland, 1998
[11] H. Pearson. “The Regeneration Gap”. Nature, vol. 414, 22, p. 388-390, November 2001.
[12] J.A. Reggia, S.L. Armentrout, H.-H. Chou, and Y. Peng. “Simple systems that exhibit self-directed

replication”. Science, 259:1282–1287, February 1993.
[13] M. Sipper. The Evolution of Cellular Automata: The Cellular Programming Approach. Springer-

Verlag, Berlin 1997.
[14] M. Sipper. “Fifty years of research on self-replication: An overview”. Artificial Life, 4:237-257, 1998.
[15] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauffer. “A phylogenetic,

ontogenetic, and epigenetic view of bio-inspired hardware systems”. IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 83-97, April 1997.

[16] A. Stauffer, D. Mange, G. Tempesti, and C. Teuscher. “BioWatch:A giant electronic bio-inspired
watch”. In D. Keymeulen, A. Stoica, J. Lohn and R.S. Zebulum (eds.), Proceedings of the Third
NASA/DOD Workshop on Evolvable Hardware (EH-2001), pp.185-192, IEEE Computer Society,
Pasadena CA, 2001.

[17] A. Stauffer and M. Sipper. “Externally controllable and destructible self-replicating loops”. In J.
Kelemen and P. Sosik (eds.), Advances in Artificial Life: Proceedings of the 6th European Conference
on Artificial Life (ECAL 2001), Lecture Notes in Artificial Intelligence, 2159:282-291, Springer-
Verlag, Heidelberg, 2001.

[18] C. Teuscher. Turing’s Connectionism. An Investigation of Neural Network Architectures. Springer-
Verlag, London, 2001.

[19] A.M. Turing. “Intelligent Machinery”. In B. Meltzer and D. Michie (eds.), Machine Intelligence,
volume 5, pages 3-23. Edinburgh University Press, Edinburgh, 1969.

[20] J. von Neumann. The Theory of Self-Reproducing Automata. A.W. Burks (ed.), University of Illinois
Press, Urbana, IL, 1966.

[21] Xilinx Corp. Spartan/XL Families FPGAs Data Sheet. Available online at http://www.xilinx.com
[22] http://lslwww.epfl.ch/biowall/
[23] http://www.villareuge.ch/
[24] http://www.poetictissue.org/

